Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cauchy principal value
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Method for assigning values to certain improper integrals which would otherwise be undefined}} {{about|a method for assigning values to improper integrals|the values of a complex function associated with a single branch|Principal value|the negative-power portion of a [[Laurent series]]|Principal part}} In [[mathematics]], the '''Cauchy principal value''', named after [[Augustin-Louis Cauchy]], is a method for assigning values to certain [[improper integral]]s which would otherwise be undefined. In this method, a [[Singularity (mathematics)|singularity]] on an integral interval is avoided by limiting the integral interval to the non singular domain. ==Formulation== Depending on the type of [[Mathematical singularity|singularity]] in the integrand {{mvar|f}}, the Cauchy principal value is defined according to the following rules: {{term|id=For a singularity at a finite number b|For a singularity at a finite number {{mvar|b}}}}{{defn| <math display="block">\lim_{ \; \varepsilon \to 0^+ \;} \, \, \left[ \, \int_a^{b-\varepsilon} f(x) \, \mathrm{d}x ~ + ~ \int_{b+\varepsilon}^c f(x) \, \mathrm{d}x \, \right]</math> with <math> a < b < c </math> and where {{mvar|b}} is the difficult point, at which the behavior of the function {{mvar|f}} is such that <math display="block">\int_a^b f(x)\,\mathrm{d}x = \pm\infty \quad</math> for any <math> a < b </math> and <math display="block">\int_b^c f(x)\,\mathrm{d}x = \mp\infty \quad</math> for any <math> c > b </math>. (See [[Plus–minus sign#Minus plus sign|''plus or minus'']] for the precise use of notations ± and ∓.) }} {{term|For a singularity at infinity (<math>\infty</math>)}}{{defn| <math display="block">\lim_{a\to\infty} \, \int_{-a}^a f(x)\,\mathrm{d}x </math> where <math display="block"> \int_{-\infty}^0 f(x) \,\mathrm{d}x = \pm\infty </math> and <math display="block"> \int_0^\infty f(x) \,\mathrm{d}x = \mp\infty .</math> }} In some cases it is necessary to deal simultaneously with singularities both at a finite number {{mvar|b}} and at infinity. This is usually done by a limit of the form <math display="block">\lim_{\;\eta \to 0^+}\, \lim_{\;\varepsilon \to 0^+} \,\left[\,\int_{b - \frac{1}{\eta}}^{b - \varepsilon} f(x)\,\mathrm{d}x \,~ + ~ \int_{b+\varepsilon}^{b + \frac{1}{\eta}} f(x)\,\mathrm{d}x \,\right].</math> In those cases where the integral may be split into two independent, finite limits, <math display="block">\lim_{\; \varepsilon\to 0^+\;} \, \left|\,\int_a^{b-\varepsilon} f(x)\,\mathrm{d}x \,\right|\; < \;\infty </math> and <math display="block"> \lim_{\;\eta\to 0^+}\;\left|\,\int_{b+\eta}^c f(x)\,\mathrm{d}x \,\right| \; < \; \infty ,</math> then the function is integrable in the ordinary sense. The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, it is technically not a "principal value". The Cauchy principal value can also be defined in terms of [[Methods of contour integration|contour integrals]] of a complex-valued function <math> f(z) : z = x + i\, y \;,</math> with <math> x , y \in \mathbb{R} \;,</math> with a pole on a contour {{mvar|C}}. Define <math>C(\varepsilon)</math> to be that same contour, where the portion inside the disk of radius {{mvar|ε}} around the pole has been removed. Provided the function <math>f(z)</math> is integrable over <math>C(\varepsilon)</math> no matter how small {{mvar|ε}} becomes, then the Cauchy principal value is the limit:<ref name=Kanwal>{{cite book |first=Ram P. |last=Kanwal |year=1996 |title=Linear Integral Equations: Theory and technique |edition=2nd |page=191 |publisher=Birkhäuser |place=Boston, MA |isbn=0-8176-3940-3 |url=https://books.google.com/books?id=-bV9Qn8NpCYC&q=+%22Poincar%C3%A9-Bertrand+transformation%22&pg=PA194 |via=Google Books}}</ref> <math display="block">\operatorname{p.\!v.} \int_{C} f(z) \,\mathrm{d}z = \lim_{\varepsilon \to 0^+} \int_{C( \varepsilon)} f(z)\, \mathrm{d}z .</math> In the case of [[Lebesgue integral|Lebesgue-integrable]] functions, that is, functions which are integrable in [[absolute value]], these definitions coincide with the standard definition of the integral. If the function <math>f(z)</math> is ''[[meromorphic]]'', the [[Sokhotski–Plemelj theorem]] relates the principal value of the integral over {{mvar|C}} with the mean-value of the integrals with the contour displaced slightly above and below, so that the [[residue theorem]] can be applied to those integrals. Principal value integrals play a central role in the discussion of [[Hilbert transform]]s.<ref name=King>{{cite book |first=Frederick W. |last=King |year=2009 |title=Hilbert Transforms |publisher=Cambridge University Press |place=Cambridge, UK |isbn=978-0-521-88762-5}}</ref> == Distribution theory == Let <math> {C_{c}^{\infty}}(\mathbb{R}) </math> be the set of [[bump function]]s, i.e., the space of [[smooth function]]s with [[compact support]] on the [[real number|real line]] <math> \mathbb{R} </math>. Then the map <math display="block"> \operatorname{p.\!v.} \left( \frac{1}{x} \right) \,:\, {C_{c}^{\infty}}(\mathbb{R}) \to \mathbb{C} </math> defined via the Cauchy principal value as <math display="block"> \left[ \operatorname{p.\!v.} \left( \frac{1}{x} \right) \right](u) = \lim_{\varepsilon \to 0^{+}} \int_{\mathbb{R} \setminus [- \varepsilon,\varepsilon]} \frac{u(x)}{x} \, \mathrm{d} x = \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{+ \infty} \frac{u(x) - u(- x)}{x} \, \mathrm{d} x \quad \text{for } u \in {C_{c}^{\infty}}(\mathbb{R}) </math> is a [[distribution (mathematics)|distribution]]. The map itself may sometimes be called the '''principal value''' (hence the notation '''p.v.'''). This distribution appears, for example, in the [[Fourier transform]] of the [[sign function]] and the [[Heaviside step function]]. ===Well-definedness as a distribution=== To prove the existence of the limit <math display="block"> \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{+ \infty} \frac{u(x) - u(- x)}{x} \, \mathrm{d}x </math> for a [[Schwartz function]] <math>u(x)</math>, first observe that <math>\frac{u(x) - u(-x)}{x}</math> is continuous on <math>[0, \infty),</math> as <math display="block"> \lim_{\,x \searrow 0\,} \; \Bigl[ u(x) - u(-x) \Bigr] ~= ~0 ~</math> and hence <math display="block"> \lim_{x\searrow 0} \, \frac{u(x) - u(-x)}{x} ~=~ \lim_{\,x\searrow 0\,} \, \frac{u'(x) + u'(-x)}{1} ~=~ 2u'(0)~, </math> since <math>u'(x)</math> is continuous and [[L'Hopital's rule]] applies. Therefore, <math>\int_0^1 \, \frac{u(x) - u(-x)}{x} \, \mathrm{d}x</math> exists and by applying the [[mean value theorem]] to <math>u(x) - u(-x) ,</math> we get: :<math> \left|\, \int_0^1\,\frac{u(x) - u(-x)}{x} \,\mathrm{d}x \,\right| \;\leq\; \int_0^1 \frac{\bigl|u(x)-u(-x)\bigr|}{x} \,\mathrm{d}x \;\leq\; \int_0^1\,\frac{\,2x\,}{x}\,\sup_{x \in \mathbb{R} }\,\Bigl|u'(x)\Bigr| \,\mathrm{d}x \;\leq\; 2\,\sup_{x \in \mathbb{R} }\,\Bigl|u'(x)\Bigr| ~. </math> And furthermore: :<math> \left| \,\int_1^\infty \frac {\;u(x) - u(-x)\;}{x} \,\mathrm{d}x \,\right| \;\leq\; 2 \,\sup_{x\in\mathbb{R}} \,\Bigl|x\cdot u(x)\Bigr|~\cdot\;\int_1^\infty \frac{\mathrm{d}x}{\,x^2\,} \;=\; 2 \,\sup_{x\in\mathbb{R}}\, \Bigl|x \cdot u(x)\Bigr| ~, </math> we note that the map <math display="block"> \operatorname{p.v.}\;\left( \frac{1}{\,x\,} \right) \,:\, {C_{c}^{\infty}}(\mathbb{R}) \to \mathbb{C} </math> is bounded by the usual seminorms for [[Schwartz functions]] <math> u</math>. Therefore, this map defines, as it is obviously linear, a continuous functional on the [[Schwartz space]] and therefore a [[distribution (mathematics)#Tempered distributions and Fourier transform|tempered distribution]]. Note that the proof needs <math>u</math> merely to be continuously differentiable in a neighbourhood of 0 and <math> x\,u </math> to be bounded towards infinity. The principal value therefore is defined on even weaker assumptions such as <math>u</math> integrable with compact support and differentiable at 0. ===More general definitions=== The principal value is the inverse distribution of the function <math> x </math> and is almost the only distribution with this property: <math display="block"> x f = 1 \quad \Leftrightarrow \quad \exists K: \; \; f = \operatorname{p.\!v.} \left( \frac{1}{x} \right) + K \delta, </math> where <math> K </math> is a constant and <math> \delta </math> the Dirac distribution. In a broader sense, the principal value can be defined for a wide class of [[singular integral]] [[integral kernel|kernels]] on the Euclidean space <math> \mathbb{R}^{n} </math>. If <math> K </math> has an isolated singularity at the origin, but is an otherwise "nice" function, then the principal-value distribution is defined on compactly supported smooth functions by <math display="block"> [\operatorname{p.\!v.} (K)](f) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{n} \setminus B_{\varepsilon}(0)} f(x) K(x) \, \mathrm{d} x. </math> Such a limit may not be well defined, or, being well-defined, it may not necessarily define a distribution. It is, however, well-defined if <math> K </math> is a continuous [[homogeneous function]] of degree <math> -n </math> whose integral over any sphere centered at the origin vanishes. This is the case, for instance, with the [[Riesz transform]]s. ==Examples== Consider the values of two limits: <math display="block">\lim_{a \to 0+}\left(\int_{-1}^{-a}\frac{\mathrm{d}x}{x} + \int_a^1\frac{\mathrm{d}x}{x}\right)=0,</math> This is the Cauchy principal value of the otherwise ill-defined expression <math display="block">\int_{-1}^1\frac{\mathrm{d}x}{x}, \text{ (which gives } {-\infty}+\infty \text{)}.</math> Also: <math display="block">\lim_{a \to 0+}\left(\int_{-1}^{-2 a}\frac{\mathrm{d}x}{x}+\int_{a}^1\frac{\mathrm{d}x}{x}\right)=\ln 2.</math> Similarly, we have <math display="block">\lim_{a \to \infty}\int_{-a}^a\frac{2x\,\mathrm{d}x}{x^2+1}=0,</math> This is the principal value of the otherwise ill-defined expression <math display="block">\int_{-\infty}^\infty\frac{2x\,\mathrm{d}x}{x^2+1} \text{ (which gives } {-\infty}+\infty \text{)}.</math> but <math display="block">\lim_{a\to\infty}\int_{-2a}^a\frac{2x\,\mathrm{d}x}{x^2+1}=-\ln 4.</math> ==Notation== Different authors use different notations for the Cauchy principal value of a function <math>f</math>, among others: <math display="block">PV \int f(x)\,\mathrm{d}x,</math> <math display="block">\mathrm{p.v.} \int f(x)\,\mathrm{d}x,</math> <math display="block">\int_L^* f(z)\, \mathrm{d}z,</math> <math display="block"> -\!\!\!\!\!\!\int f(x)\,\mathrm{d}x,</math> as well as <math>P,</math> P.V., <math>\mathcal{P},</math> <math>P_v,</math> <math>(CPV),</math> <math>\mathcal{C},</math> and V.P. == See also == *[[Hadamard finite part integral]] *[[Hilbert transform]] *[[Sokhotski–Plemelj theorem]] == References == {{reflist|25em}} [[Category:Augustin-Louis Cauchy]] [[Category:Mathematical analysis]] [[Category:Generalized functions]] [[Category:Integrals]] [[Category:Summability methods]] [[Category:Schwartz distributions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Cite book
(
edit
)
Template:Defn
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Term
(
edit
)