Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cayley transform
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical operation}} In [[mathematics]], the '''Cayley transform''', named after [[Arthur Cayley]], is any of a cluster of related things. As originally described by {{Harvtxt|Cayley|1846}}, the Cayley transform is a mapping between [[skew-symmetric matrix|skew-symmetric matrices]] and [[special orthogonal matrix|special orthogonal matrices]]. The transform is a [[homography]] used in [[real analysis]], [[complex analysis]], and [[quaternionic analysis]]. In the theory of [[Hilbert space]]s, the Cayley transform is a mapping between [[linear operator]]s {{Harv|Nikolski|1988}}. ==Real homography== A simple example of a Cayley transform can be done on the [[real projective line]]. The Cayley transform here will permute the elements of {1, 0, −1, ∞} in sequence. For example, it maps the [[positive real numbers]] to the interval [−1, 1]. Thus the Cayley transform is used to adapt [[Legendre polynomials]] for use with functions on the positive real numbers with [[Legendre rational functions]]. As a real [[homography]], points are described with [[projective coordinates]], and the mapping is :<math>[y,\ 1] = \left[\frac {x - 1}{x +1},\ 1\right] \thicksim [x - 1, \ x + 1] = [x,\ 1]\begin{pmatrix}1 & 1 \\ -1 & 1 \end{pmatrix} .</math> ==Complex homography== [[Image:Cayley transform in complex plane.png|thumb|right| 300px|Cayley transform of upper complex half-plane to unit disk]] On the [[Upper half-plane|upper half]] of the [[complex plane]], the Cayley transform is:<ref>Robert Everist Green & [[Steven G. Krantz]] (2006) ''Function Theory of One Complex Variable'', page 189, [[Graduate Studies in Mathematics]] #40, [[American Mathematical Society]] {{ISBN|9780821839621}}</ref><ref>[[Erwin Kreyszig]] (1983) ''Advanced Engineering Mathematics'', 5th edition, page 611, Wiley {{ISBN|0471862517}}</ref> :<math>f(z) = \frac {z - i}{z + i} .</math> Since <math>\{\infty, 1, -1\}</math> is mapped to <math>\{1, -i, i\}</math>, and [[Möbius transformation]]s permute the [[generalised circle]]s in the [[complex plane]], <math>f</math> maps the real line to the [[unit circle]]. Furthermore, since <math>f</math> is a [[homeomorphism]] and <math>i</math> is taken to 0 by <math>f</math>, the upper half-plane is mapped to the [[unit disk]]. In terms of the [[mathematical model|models]] of [[hyperbolic geometry]], this Cayley transform relates the [[Poincaré half-plane model]] to the [[Poincaré disk model]]. In electrical engineering the Cayley transform has been used to map a [[electrical reactance|reactance]] half-plane to the [[Smith chart]] used for [[impedance matching]] of transmission lines. ==Quaternion homography== In the [[four-dimensional space]] of [[quaternion]]s <math>a+b\vec{i}+c\vec{j}+d\vec{k}</math>, the [[versor]]s :<math>u(\theta, r) = \cos \theta + r \sin \theta </math> form the unit [[3-sphere]]. Since quaternions are non-commutative, elements of its [[projective line over a ring|projective line]] have homogeneous coordinates written <math>U[a,b]</math> to indicate that the homogeneous factor multiplies on the left. The quaternion transform is :<math>f(u,q) = U[q,1]\begin{pmatrix}1 & 1 \\ -u & u \end{pmatrix} = U[q - u,\ q + u] \sim U[(q + u)^{-1}(q - u),\ 1].</math> The real and complex homographies described above are instances of the quaternion homography where <math>\theta</math> is zero or <math>\pi/2</math>, respectively. Evidently the transform takes <math>u\to 0\to -1</math> and takes <math>-u \to \infty \to 1</math>. Evaluating this homography at <math>q=1</math> maps the versor <math>u</math> into its axis: :<math>f(u,1) =(1+u)^{-1}(1-u) = (1+u)^*(1-u)/ |1+u|^2.</math> But <math>|1+u|^2 = (1+u)(1+u^*) = 2 + 2 \cos \theta ,\quad \text{and}\quad (1+u^*)(1-u) = -2 r \sin \theta .</math> Thus <math>f(u,1) = -r \frac {\sin \theta}{1 + \cos \theta} = -r \tan \frac{\theta}{2} .</math> In this form the Cayley transform has been described as a rational parametrization of rotation: Let <math>t=\tan\phi/2</math> in the complex number identity<ref>See [[Tangent half-angle formula]]</ref> :<math>e^{-i \varphi} = \frac{1 - ti}{1 + ti} </math> where the right hand side is the transform of <math>ti</math> and the left hand side represents the rotation of the plane by negative <math>\phi</math> radians. ===Inverse=== Let <math>u^* = \cos \theta - r \sin \theta = u^{-1} .</math> Since :<math>\begin{pmatrix} 1 & 1 \\ -u & u \end{pmatrix}\ \begin{pmatrix} 1 & -u^* \\ 1 & u^* \end{pmatrix} \ = \ \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \ \sim \ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \ ,</math> where the equivalence is in the [[projective linear group]] over quaternions, the [[inverse function|inverse]] of <math>f(u,1)</math> is :<math>U[p,1] \begin{pmatrix} 1 & -u^* \\ 1 & u^* \end{pmatrix} \ = \ U[p+1,\ (1-p)u^*] \sim U[u(1-p)^{-1} (p+1), \ 1] .</math> Since homographies are [[bijection]]s, <math>f^{-1} (u,1)</math> maps the vector quaternions to the 3-sphere of versors. As versors represent rotations in 3-space, the homography <math>f^{-1}</math> produces rotations from the ball in <math>\R^3</math>. == Matrix map == Among ''n''×''n'' [[square matrix|square matrices]] over the [[real number|reals]], with ''I'' the [[identity matrix]], let ''A'' be any [[skew-symmetric matrix]] (so that ''A''<sup>T</sup> = −''A''). Then ''I'' + ''A'' is [[invertible matrix|invertible]], and the Cayley transform :<math> Q = (I - A)(I + A)^{-1} \,\!</math> produces an [[orthogonal matrix]], ''Q'' (so that ''Q''<sup>T</sup>''Q'' = ''I''). The matrix multiplication in the definition of ''Q'' above is commutative, so ''Q'' can be alternatively defined as <math> Q = (I + A)^{-1}(I - A)</math>. In fact, ''Q'' must have determinant +1, so is special orthogonal. Conversely, let ''Q'' be any orthogonal matrix which does not have −1 as an [[eigenvalue]]; then :<math> A = (I - Q)(I + Q)^{-1} \,\!</math> is a skew-symmetric matrix. (See also: [[Involution (mathematics)|Involution]].) The condition on ''Q'' automatically excludes matrices with determinant −1, but also excludes certain special orthogonal matrices. However, any rotation (special orthogonal) matrix ''Q'' can be written as :<math>Q = \bigl((I - A)(I + A)^{-1}\bigr)^2</math> for some skew-symmetric matrix ''A''; more generally any orthogonal matrix ''Q'' can be written as :<math>Q = E(I - A)(I + A)^{-1}</math> for some skew-symmetric matrix ''A'' and some diagonal matrix ''E'' with ±1 as entries.<ref>{{cite arXiv |last=Gallier |first=Jean |author-link=Jean Gallier |title=Remarks on the Cayley Representation of Orthogonal Matrices and on Perturbing the Diagonal of a Matrix to Make it Invertible | eprint=math/0606320 |year=2006}}{{pb}} As described by Gallier, the first of these results is a sharpened variant of {{cite book |last=Weyl |first=Hermann |author-link=Hermann Weyl |year=1946 |title=The Classical Groups |edition=2nd |publisher=Princeton University Press |at=Lemma 2.10.D, p. 60 }}{{pb}} The second appeared as an exercise in {{cite book |last=Bellman |first=Richard |title=Introduction to Matrix Analysis |publisher=SIAM Publications |year=1960 |at=§6.4 exercise 11, p. 91–92 }} </ref> A slightly different form is also seen,<ref>{{Citation | last1=Golub | first1=Gene H. | author1-link=Gene H. Golub | last2=Van Loan | first2=Charles F. | author2-link=Charles F. Van Loan | title=Matrix Computations | edition=3rd | publisher=[[Johns Hopkins University Press]] | year=1996 | isbn=978-0-8018-5414-9}}</ref><ref>F. Chong (1971) "A Geometric Note on the Cayley Transform", pages 84,5 in ''A Spectrum of Mathematics: Essays Presented to H. G. Forder'', [[John C. Butcher]] editor, [[Auckland University Press]]</ref> requiring different mappings in each direction, :<math>\begin{align} Q &= (I - A)^{-1}(I + A), \\[5mu] A &= (Q - I)(Q + I)^{-1}. \end{align}</math> The mappings may also be written with the order of the factors reversed;<ref>{{Citation| last1=Courant| first1=Richard| author1-link=Richard Courant| last2=Hilbert| first2=David| author2-link=David Hilbert| title=Methods of Mathematical Physics| volume=1| edition=1st English| publisher=Wiley-Interscience | year=1989 | pages=536, 7 | place=New York | isbn=978-0-471-50447-4}} Ch.VII, §7.2</ref><ref>[[Howard Eves]] (1966) ''Elementary Matrix Theory'', § 5.4A Cayley’s Construction of Real Orthogonal Matrices, pages 365–7, [[Allyn & Bacon]]</ref> however, ''A'' always commutes with (μ''I'' ± ''A'')<sup>−1</sup>, so the reordering does not affect the definition. === Examples === In the 2×2 case, we have :<math> \begin{bmatrix} 0 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} . </math> The 180° [[rotation matrix]], −''I'', is excluded, though it is the limit as tan <sup>θ</sup>⁄<sub>2</sub> goes to infinity. In the 3×3 case, we have :<math> \begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix} \leftrightarrow \frac{1}{K} \begin{bmatrix} w^2+x^2-y^2-z^2 & 2 (x y-w z) & 2 (w y+x z) \\ 2 (x y+w z) & w^2-x^2+y^2-z^2 & 2 (y z-w x) \\ 2 (x z-w y) & 2 (w x+y z) & w^2-x^2-y^2+z^2 \end{bmatrix} , </math> where ''K'' = ''w''<sup>2</sup> + ''x''<sup>2</sup> + ''y''<sup>2</sup> + ''z''<sup>2</sup>, and where ''w'' = 1. This we recognize as the rotation matrix corresponding to [[quaternion]] :<math> w + \mathbf{i} x + \mathbf{j} y + \mathbf{k} z \,\!</math> (by a formula Cayley had published the year before), except scaled so that ''w'' = 1 instead of the usual scaling so that ''w''<sup>2</sup> + ''x''<sup>2</sup> + ''y''<sup>2</sup> + ''z''<sup>2</sup> = 1. Thus vector (''x'',''y'',''z'') is the unit axis of rotation scaled by tan <sup>θ</sup>⁄<sub>2</sub>. Again excluded are 180° rotations, which in this case are all ''Q'' which are [[symmetric matrix|symmetric]] (so that ''Q''<sup>T</sup> = ''Q''). === Other matrices === One can extend the mapping to [[complex number|complex]] matrices by substituting "[[unitary matrix|unitary]]" for "orthogonal" and "[[skew-Hermitian matrix|skew-Hermitian]]" for "skew-symmetric", the difference being that the transpose (·<sup>T</sup>) is replaced by the [[conjugate transpose]] (·<sup>H</sup>). This is consistent with replacing the standard real [[inner product]] with the standard complex inner product. In fact, one may extend the definition further with choices of [[Hermitian adjoint|adjoint]] other than transpose or conjugate transpose. Formally, the definition only requires some invertibility, so one can substitute for ''Q'' any matrix ''M'' whose eigenvalues do not include −1. For example, :<math> \begin{bmatrix} 0 & -a & ab - c \\ 0 & 0 & -b \\ 0 & 0 & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 2a & 2c \\ 0 & 1 & 2b \\ 0 & 0 & 1 \end{bmatrix} . </math> Note that ''A'' is skew-symmetric (respectively, skew-Hermitian) if and only if ''Q'' is orthogonal (respectively, unitary) with no eigenvalue −1. == Operator map == An infinite-dimensional version of an [[inner product space]] is a [[Hilbert space]], and one can no longer speak of [[matrix (mathematics)|matrices]]. However, matrices are merely representations of [[linear operator]]s, and these can be used. So, generalizing both the matrix mapping and the complex plane mapping, one may define a Cayley transform of operators.{{sfn | Rudin | 1991 | p=356-357 §13.17}} :<math>\begin{align} U &{}= (A - \mathbf{i}I) (A + \mathbf{i}I)^{-1} \\ A &{}= \mathbf{i}(I + U) (I - U)^{-1} \end{align}</math> Here the domain of ''U'', dom ''U'', is (''A''+'''i'''''I'') dom ''A''. See [[self-adjoint operator#Extensions of symmetric operators|self-adjoint operator]] for further details. == See also == * [[Bilinear transform]] * [[Extensions of symmetric operators]] == References == {{Reflist}} * Sterling K. Berberian (1974) ''Lectures in Functional Analysis and Operator Theory'', [[Graduate Texts in Mathematics]] #15, pages 278, 281, Springer-Verlag {{ISBN|978-0-387-90081-0}} * {{Citation | last=Cayley | first=Arthur | author-link=Arthur Cayley | year=1846 | title=Sur quelques propriétés des déterminants gauches | journal=[[Journal für die reine und angewandte Mathematik]] | volume=32 | pages=119–123 | issue=2 | url=https://www.digizeitschriften.de/id/243919689_0032%7Clog19?tify=%7B%22pages%22%3A%5B129%5D%2C%7D | issn=0075-4102 | doi=10.1515/crll.1846.32.119 }}; reprinted as article 52 (pp. 332–336) in {{Citation | last=Cayley | first=Arthur | author-link=Arthur Cayley | year=1889 | title=The collected mathematical papers of Arthur Cayley | publisher=[[Cambridge University Press]] | volume=I (1841–1853) | pages=332–336 | isbn=<!-- none given --> | url=http://www.hti.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;rgn=full%20text;idno=ABS3153.0001.001;didno=ABS3153.0001.001;view=image;seq=00000349 }} * Lokenath Debnath & Piotr Mikusiński (1990) ''Introduction to Hilbert Spaces with Applications'', page 213, [[Academic Press]] {{ISBN|0-12-208435-7}} * Gilbert Helmberg (1969) ''Introduction to Spectral Theory in Hilbert Space'', page 288, § 38: The Cayley Transform, Applied Mathematics and Mechanics #6, [[North Holland (publisher)|North Holland]] * {{Citation |last=Nikolski |first=Nikolai Kapitonovich |author-link=Nikolai Kapitonovich Nikolski |contribution=Cayley transform |contribution-url=http://www.encyclopediaofmath.org/index.php?title=Cayley_transform |editor-last=Hazewinkel |editor-first= Michiel |editor-link=Michiel Hazewinkel |title=[[Encyclopaedia of Mathematics]] |volume=2 |year=1988 |page=80 |publisher=Kluwer |doi=10.1007/978-94-009-6000-8 |isbn=978-94-009-6002-2 }}; translated from the Russian {{Citation |editor-last=Vinogradov |editor-first=Ivan Matveevich |editor-link=Ivan Vinogradov |title=Matematicheskaya Entsiklopediya |place=Moscow |publisher=Sovetskaya Entsiklopediya |year=1977}} * Henry Ricardo (2010) ''A Modern Introduction to Linear Algebra'', page 504, [[CRC Press]] {{ISBN|978-1-4398-0040-9}} . * {{Rudin Walter Functional Analysis|edition=2}} <!-- {{sfn | Rudin | 1991 | p=356-357 §13.17}} --> [[Category:Conformal mappings]] [[Category:Transforms]] [[ru:Преобразование Мёбиуса#Примеры]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Harv
(
edit
)
Template:Harvtxt
(
edit
)
Template:ISBN
(
edit
)
Template:Pb
(
edit
)
Template:Reflist
(
edit
)
Template:Rudin Walter Functional Analysis
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)