Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Center (group theory)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Set of elements that commute with every element of a group}} {{Use American English|date=March 2021}} {{Use mdy dates|date=March 2021}} {{redirect|Group center|the American counter-cultural group|Aldo Tambellini#Lower East Side artists}} {| class="wikitable floatright" |+ style="text-align: left;" | [[Cayley table]] for [[Dihedral group of order 8|D<sub>4</sub>]] showing elements of the center, {e, a<sup>2</sup>}, commute with all other elements (this can be seen by noticing that all occurrences of a given center element are arranged symmetrically about the center diagonal or by noticing that the row and column starting with a given center element are [[Transpose|transposes]] of each other). |- ! <math>\circ</math> || e|| b|| a|| a<sup>2</sup>|| a<sup>3</sup>|| ab|| a<sup>2</sup>b|| a<sup>3</sup>b |- align="center" ! e | style="background: green; color: white;" | '''e'''|| b|| a|| style="background: red; color: white;" | a<sup>2</sup>|| a<sup>3</sup>|| ab|| a<sup>2</sup>b|| a<sup>3</sup>b |- align="center" ! b | b|| style="background: green; color: white;" | '''e'''|| a<sup>3</sup>b|| a<sup>2</sup>b|| ab|| a<sup>3</sup>|| style="background: red; color: white;" | a<sup>2</sup>|| a |- align="center" ! a | a|| ab|| style="background: red; color: white;" | a<sup>2</sup>|| a<sup>3</sup>|| style="background: green; color: white;" | '''e'''|| a<sup>2</sup>b|| a<sup>3</sup>b|| b |- align="center" ! a<sup>2</sup> | style="background: red; color: white;" | a<sup>2</sup>|| a<sup>2</sup>b|| a<sup>3</sup>|| style="background: green; color: white;" | '''e'''|| a|| a<sup>3</sup>b|| b|| ab |- align="center" ! a<sup>3</sup> | a<sup>3</sup> || a<sup>3</sup>b|| style="background: green; color: white;" | '''e'''|| a|| style="background: red; color: white;" | a<sup>2</sup>|| b|| ab|| a<sup>2</sup>b |- align="center" ! ab | ab|| a|| b|| a<sup>3</sup>b|| a<sup>2</sup>b|| style="background: green; color: white;" | '''e'''|| a<sup>3</sup>|| style="background: red; color: white;" | a<sup>2</sup> |- align="center" ! a<sup>2</sup>b | a<sup>2</sup>b|| style="background: red; color: white;" | a<sup>2</sup>|| ab|| b|| a<sup>3</sup>b|| a|| style="background: green; color: white;" | '''e'''|| a<sup>3</sup> |- align="center" ! a<sup>3</sup>b | a<sup>3</sup>b|| a<sup>3</sup>|| a<sup>2</sup>b|| ab|| b|| style="background: red; color: white;" | a<sup>2</sup>|| a|| style="background: green; color: white;" | '''e''' |} In [[abstract algebra]], the '''center''' of a [[group (mathematics)|group]] {{math|''G''}} is the [[set (mathematics)|set]] of elements that [[commutative|commute]] with every element of {{math|''G''}}. It is denoted {{math|Z(''G'')}}, from German ''[[wikt:Zentrum|Zentrum]],'' meaning ''center''. In [[set-builder notation]], :{{math|1=Z(''G'') = {{mset|''z'' β ''G'' | β''g'' β ''G'', ''zg'' {{=}} ''gz''}}}}. The center is a [[normal subgroup]], <math>Z(G)\triangleleft G</math>, and also a [[characteristic subgroup|characteristic]] subgroup, but is not necessarily [[fully characteristic subgroup|fully characteristic]]. The [[quotient group]], {{math|''G'' / Z(''G'')}}, is [[group isomorphism|isomorphic]] to the [[inner automorphism]] group, {{math|Inn(''G'')}}. A group {{math|''G''}} is abelian if and only if {{math|1=Z(''G'') = ''G''}}. At the other extreme, a group is said to be '''centerless''' if {{math|Z(''G'')}} is [[trivial group|trivial]]; i.e., consists only of the [[identity element]]. The elements of the center are '''central elements'''. ==As a subgroup== The center of ''G'' is always a [[subgroup (mathematics)|subgroup]] of {{math|''G''}}. In particular: # {{math|Z(''G'')}} contains the [[identity element]] of {{math|''G''}}, because it commutes with every element of {{math|''g''}}, by definition: {{math|1=''eg'' = ''g'' = ''ge''}}, where {{math|''e''}} is the identity; # If {{math|''x''}} and {{math|''y''}} are in {{math|Z(''G'')}}, then so is {{math|''xy''}}, by associativity: {{math|1=(''xy'')''g'' = ''x''(''yg'') = ''x''(''gy'') = (''xg'')''y'' = (''gx'')''y'' = ''g''(''xy'')}} for each {{math|''g'' β ''G''}}; i.e., {{math|Z(''G'')}} is closed; # If {{math|''x''}} is in {{math|Z(''G'')}}, then so is {{math|''x''{{sup|β1}}}} as, for all {{math|''g''}} in {{math|''G''}}, {{math|''x''{{sup|β1}}}} commutes with {{math|''g''}}: {{math|1=(''gx'' = ''xg'') β (''x''{{sup|β1}}''gxx''{{sup|β1}} = ''x''{{sup|β1}}''xgx''{{sup|β1}}) β (''x''{{sup|β1}}''g'' = ''gx''{{sup|β1}})}}. Furthermore, the center of {{math|''G''}} is always an [[abelian group|abelian]] and [[normal subgroup]] of {{math|''G''}}. Since all elements of {{math|Z(''G'')}} commute, it is closed under [[conjugate closure|conjugation]]. A group homomorphism {{math|''f'' : ''G'' β ''H''}} might not restrict to a homomorphism between their centers. The image elements {{math|''f'' (''g'')}} commute with the image {{math|''f'' ( ''G'' )}}, but they need not commute with all of {{math|''H''}} unless {{math|''f''}} is surjective. Thus the center mapping <math>G\to Z(G)</math> is not a functor between categories Grp and Ab, since it does not induce a map of arrows. ==Conjugacy classes and centralizers== By definition, an element is central whenever its [[conjugacy class]] contains only the element itself; i.e. {{math|1=Cl(''g'') = {''g''}<nowiki/>}}. The center is the [[intersection (set theory)|intersection]] of all the [[centralizer and normalizer|centralizers]] of elements of {{math|''G''}}: <blockquote><math>Z(G) = \bigcap_{g\in G} Z_G(g).</math> </blockquote>As centralizers are subgroups, this again shows that the center is a subgroup. == Conjugation == Consider the map {{math|''f'' : ''G'' β Aut(''G'')}}, from {{math|''G''}} to the [[automorphism group]] of {{math|''G''}} defined by {{math|1=''f''(''g'') = ''Ο''{{sub|''g''}}}}, where {{math|''Ο''{{sub|''g''}}}} is the automorphism of {{math|''G''}} defined by :{{math|1=''f''(''g'')(''h'') = ''Ο''{{sub|''g''}}(''h'') = ''ghg''{{sup|β1}}}}. The function, {{math|''f''}} is a [[group homomorphism]], and its [[kernel (algebra)|kernel]] is precisely the center of {{math|''G''}}, and its image is called the [[inner automorphism group]] of {{math|''G''}}, denoted {{math|Inn(''G'')}}. By the [[first isomorphism theorem]] we get, :{{math|''G''/Z(''G'') β Inn(''G'')}}. The [[cokernel]] of this map is the group {{math|Out(''G'')}} of [[outer automorphism]]s, and these form the [[exact sequence]] :{{math|1 βΆ Z(''G'') βΆ ''G'' βΆ Aut(''G'') βΆ Out(''G'') βΆ 1}}. ==Examples== * The center of an [[abelian group]], {{math|''G''}}, is all of {{math|''G''}}. * The center of the [[Heisenberg group]], {{math|''H''}}, is the set of matrices of the form: <math display="block"> \begin{pmatrix} 1 & 0 & z\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}</math> * The center of a [[nonabelian group|nonabelian]] [[simple group]] is trivial. * The center of the [[dihedral group]], {{math|D{{sub|''n''}}}}, is trivial for odd {{math|''n'' β₯ 3}}. For even {{math|''n'' β₯ 4}}, the center consists of the identity element together with the 180Β° rotation of the [[polygon]]. * The center of the [[quaternion group]], {{math|1=Q{{sub|8}} = {1, β1, i, βi, j, βj, k, βk} }}, is {{math|{1, β1}<nowiki/>}}. * The center of the [[symmetric group]], {{math|''S''{{sub|''n''}}}}, is trivial for {{math|''n'' β₯ 3}}. * The center of the [[alternating group]], {{math|''A''{{sub|''n''}}}}, is trivial for {{math|''n'' β₯ 4}}. * The center of the [[general linear group]] over a [[Field (mathematics)|field]] {{math|F}}, {{math|GL{{sub|''n''}}(F)}}, is the collection of [[diagonal matrix|scalar matrices]], {{math|{{mset| sI<sub>''n''</sub> β£ s β F \ {0} }}}}. * The center of the [[orthogonal group]], {{math|O<sub>''n''</sub>(F)}} is {{math|{I<sub>''n''</sub>, βI<sub>''n''</sub>}<nowiki/>}}. * The center of the [[special orthogonal group]], {{math|SO(''n'')}} is the whole group when {{math|1=''n'' = 2}}, and otherwise {{math|{{mset|I<sub>''n''</sub>, βI<sub>''n''</sub>}}}} when ''n'' is even, and trivial when ''n'' is odd. * The center of the [[unitary group]], <math>U(n)</math> is <math>\left\{ e^{i\theta} \cdot I_n \mid \theta \in [0, 2\pi) \right\}</math>. * The center of the [[special unitary group]], <math>\operatorname{SU}(n)</math> is <math display="inline">\left\lbrace e^{i\theta} \cdot I_n \mid \theta = \frac{2k\pi}{n}, k = 0, 1, \dots, n-1 \right\rbrace </math>. * The center of the multiplicative group of non-zero [[quaternion]]s is the multiplicative group of non-zero [[real number]]s. * Using the [[class equation]], one can prove that the center of any non-trivial [[finite group|finite]] [[p-group]] is non-trivial. * If the [[quotient group]] {{math|''G''/Z(''G'')}} is [[cyclic group|cyclic]], {{math|''G''}} is [[abelian group|abelian]] (and hence {{math|1=''G'' = Z(''G'')}}, so {{math|''G''/Z(''G'')}} is trivial). * The center of the [[Rubik's Cube group]] consists of two elements β the identity (i.e. the solved state) and the [[superflip]]. The center of the [[Pocket Cube]] group is trivial. * The center of the [[Megaminx]] group has order 2, and the center of the [[Kilominx]] group is trivial. ==Higher centers== Quotienting out by the center of a group yields a sequence of groups called the '''[[upper central series]]''': :{{math|1=(''G''{{sub|0}} = ''G'') βΆ (''G''{{sub|1}} = ''G''{{sub|0}}/Z(''G''{{sub|0}})) βΆ (''G''{{sub|2}} = ''G''{{sub|1}}/Z(''G''{{sub|1}})) βΆ β―}} The kernel of the map {{math|''G'' β ''G{{sub|i}}''}} is the '''{{math|''i''}}th center'''<ref>{{Cite journal |last=Ellis |first=Graham |date=1998-02-01 |title=On groups with a finite nilpotent upper central quotient |url=https://doi.org/10.1007/s000130050169 |journal=Archiv der Mathematik |language=en |volume=70 |issue=2 |pages=89β96 |doi=10.1007/s000130050169 |issn=1420-8938|url-access=subscription }}</ref> of {{math|''G''}} ('''second center''', '''third center''', etc.), denoted {{math|Z{{sup|''i''}}(''G'')}}.<ref>{{Cite journal |last=Ellis |first=Graham |date=1998-02-01 |title=On groups with a finite nilpotent upper central quotient |url=https://doi.org/10.1007/s000130050169 |journal=Archiv der Mathematik |language=en |volume=70 |issue=2 |pages=89β96 |doi=10.1007/s000130050169 |issn=1420-8938|url-access=subscription }}</ref> Concretely, the ({{math|''i''+1}})-st center comprises the elements that commute with all elements up to an element of the {{math|''i''}}th center. Following this definition, one can define the 0th center of a group to be the identity subgroup. This can be continued to [[transfinite ordinals]] by [[transfinite induction]]; the union of all the higher centers is called the '''[[hypercenter]]'''.<ref group="note">This union will include transfinite terms if the UCS does not stabilize at a finite stage.</ref> The [[total order#Chains|ascending chain]] of subgroups :{{math|1 β€ Z(''G'') β€ Z{{sup|2}}(''G'') β€ β―}} stabilizes at ''i'' (equivalently, {{math|1=Z{{sup|''i''}}(''G'') = Z{{sup|i+1}}(''G'')}}) [[if and only if]] {{math|''G''{{sub|''i''}}}} is centerless. ===Examples=== * For a centerless group, all higher centers are zero, which is the case {{math|1=Z{{sup|0}}(''G'') = Z{{sup|1}}(''G'')}} of stabilization. * By [[GrΓΌn's lemma]], the quotient of a [[perfect group]] by its center is centerless, hence all higher centers equal the center. This is a case of stabilization at {{math|1=Z{{sup|1}}(''G'') = Z{{sup|2}}(''G'')}}. ==See also== *[[Center (algebra)]] *[[Center (ring theory)]] *[[Centralizer and normalizer]] *[[Conjugacy class]] ==Notes== {{reflist|group=note}} == References == * {{cite book | last1=Fraleigh | first1=John B. | authorlink1= | year = 2014 | title = A First Course in Abstract Algebra | edition = 7 | publisher = Pearson | isbn = 978-1-292-02496-7 }} ==External links== * {{springer|title=Centre of a group|id=p/c021250}} [[Category:Group theory]] [[Category:Functional subgroups]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Math
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Use American English
(
edit
)
Template:Use mdy dates
(
edit
)