Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Centered polygonal number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Class of series of figurate numbers, each having a central dot}} {{Use American English|date=March 2021}} {{Use mdy dates|date=March 2021}} [[File:visual_proof_centered_polygonal_numbers.svg|thumb|upright|[[Proof without words|Proof]] that each centered ''k''-gonal number is ''k'' times the previous triangular number, plus 1]] In [[mathematics]], the '''centered polygonal numbers''' are a class of series of [[figurate number]]s, each formed by a central dot, surrounded by polygonal layers of dots with a constant number of sides. Each side of a polygonal layer contains one more dot than each side in the previous layer; so starting from the second polygonal layer, each layer of a centered ''k''-gonal number contains ''k'' more dots than the previous layer. == Examples == Each centered ''k''-gonal number in the series is ''k'' times the previous [[triangular number]], plus 1. This can be formalized by the expression <math>\frac{kn(n+1)}{2} +1</math>, where ''n'' is the series rank, starting with 0 for the initial 1. For example, each centered square number in the series is four times the previous triangular number, plus 1. This can be formalized by the expression <math>\frac{4n(n+1)}{2} +1</math>. These series consist of the *[[centered triangular number]]s 1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, ... ({{OEIS2C|id=A005448}}), *[[centered square number]]s 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, ... ({{OEIS2C|id=A001844}}), which are exactly the sum of consecutive squares, i.e., n^2 + (n - 1)^2. *[[centered pentagonal number]]s 1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, ... ({{OEIS2C|id=A005891}}), *[[centered hexagonal number]]s 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, ... ({{OEIS2C|id=A003215}}), which are exactly the difference of consecutive cubes, i.e. ''n''<sup>3</sup> β (''n'' β 1)<sup>3</sup>, *[[centered heptagonal number]]s 1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, ... ({{OEIS2C|id=A069099}}), *[[centered octagonal number]]s 1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, ... ({{OEIS2C|id=A016754}}), which are exactly the [[Odd number|odd]] [[Square number|squares]], *[[centered nonagonal number]]s 1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, ... ({{OEIS2C|id=A060544}}), which include all even [[perfect number]]s except 6, *[[centered decagonal number]]s 1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, ... ({{OEIS2C|id=A062786}}), *centered hendecagonal numbers 1, 12, 34, 67, 111, 166, 232, 309, 397, 496, 606, 727, ... ({{OEIS2C|id=A069125}}), *centered dodecagonal numbers 1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, ... ({{OEIS2C|id=A003154}}), which are also the [[star number]]s, and so on. The following diagrams show a few examples of centered polygonal numbers and their geometric construction. Compare these diagrams with the diagrams in [[Polygonal number]]. {| |- align="center" valign="top" ! centered<br>triangular<br>number ! centered<br>square<br>number ! centered<br>pentagonal<br>number ! centered<br>hexagonal<br>number |- | [[Image:Centered_triangular_number_19.svg|100px]] | [[Image:Centered_square_number_25.svg|100px]] | [[Image:Centered_pentagonal_number_31.svg|100px]] | [[Image:Hex_number_37.svg|100px]] |} === Centered square numbers === {| |- align="center" valign="top" ! 1 ! ! 5 ! ! 13 ! ! 25 |- align="center" valign="middle" style="line-height: 0;" |[[Image:redDot.svg|16px]] | |[[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]] | |[[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]] | |[[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:redDot.svg|16px]]<br>[[Image:redDot.svg|16px]] |} === Centered hexagonal numbers === {| style="line-height: 1em;" ! 1 !! ! 7 !! ! 19 !! ! 37 |- align="center" valign="middle" |[[Image:RedDotX.svg|16px|*]] || |[[Image:RedDot.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]] || |[[Image:RedDot.svg|16px|*]][[Image:RedDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:RedDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]] || |[[Image:RedDot.svg|16px|*]][[Image:RedDot.svg|16px|*]][[Image:RedDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:GrayDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]]<br>[[Image:RedDot.svg|16px|*]][[Image:RedDot.svg|16px|*]][[Image:RedDotX.svg|16px|*]][[Image:RedDotX.svg|16px|*]] |} [[File:visual_proof_centered_hexagonal_numbers_sum.svg|thumb|As the sum of the first ''n'' hex numbers is ''n''<sup>3</sup>, the ''n''-th hex number is {{math|''n''<sup>3</sup> − (''n''−1)<sup>3</sup>}}]] == Formulas == As can be seen in the above diagrams, the ''n''th centered ''k''-gonal number can be obtained by placing ''k'' copies of the (''n''−1)th triangular number around a central point; therefore, the ''n''th centered ''k''-gonal number is equal to :<math>C_{k,n} =\frac{kn}{2}(n-1)+1.</math> The difference of the ''n''-th and the (''n''+1)-th consecutive centered ''k''-gonal numbers is ''k''(2''n''+1). The ''n''-th centered ''k''-gonal number is equal to the ''n''-th regular ''k''-gonal number plus (''n''-1)<sup>2</sup>. Just as is the case with regular polygonal numbers, the first centered ''k''-gonal number is 1. Thus, for any ''k'', 1 is both ''k''-gonal and centered ''k''-gonal. The next number to be both ''k''-gonal and centered ''k''-gonal can be found using the formula: :<math>\frac{k^2}{2}(k-1)+1</math> which tells us that 10 is both triangular and centered triangular, 25 is both square and centered square, etc. Whereas a [[prime number]] ''p'' cannot be a [[polygonal number]] (except the trivial case, i.e. each ''p'' is the second ''p''-gonal number), many centered polygonal numbers are primes. In fact, if ''k'' β₯ 3, ''k'' β 8, ''k'' β 9, then there are infinitely many centered ''k''-gonal numbers which are primes (assuming the [[Bunyakovsky conjecture]]). Since all [[centered octagonal number]]s are also [[square number]]s, and all [[centered nonagonal number]]s are also [[triangular number]]s (and not equal to 3), thus both of them cannot be prime numbers. == Sum of reciprocals == The [[Summation|sum]] of [[Multiplicative inverse|reciprocal]]s for the centered ''k''-gonal numbers is<ref>[https://oeis.org/wiki/Centered_polygonal_numbers#Table_of_related_formulae_and_values centered polygonal numbers in OEIS wiki, content "Table of related formulae and values"]</ref> :<math>\frac{2\pi}{k\sqrt{1-\frac{8}{k}}}\tan\left(\frac{\pi}{2}\sqrt{1-\frac{8}{k}}\right)</math>, if ''k'' β 8 :<math>\frac{\pi^2}{8}</math>, if ''k'' = 8 == References == {{reflist}} *{{cite book|author=[[Neil Sloane]] & [[Simon Plouffe]]|title=''The Encyclopedia of Integer Sequences''|publisher=San Diego: Academic Press|year=1995}}: Fig. M3826 *{{mathworld|urlname=CenteredPolygonalNumber|title=Centered polygonal number}} *{{cite book|author=F. Tapson|title=The Oxford Mathematics Study Dictionary|publisher=Oxford University Press|year=1999|pages=88β89|edition=2nd|isbn=0-19-914-567-9}} {{Classes of natural numbers}} [[Category:Figurate numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Math
(
edit
)
Template:Mathworld
(
edit
)
Template:OEIS2C
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Use American English
(
edit
)
Template:Use mdy dates
(
edit
)