Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Centered square number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Centered figurate number that gives the number of dots in a square with a dot in the center}} {{Use American English|date=March 2021}} {{Use mdy dates|date=March 2021}} {{no footnotes|date=January 2016}} In [[elementary number theory]], a '''centered square number''' is a [[Centered polygonal number|centered]] [[figurate number]] that gives the number of dots in a [[Square (geometry)|square]] with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each centered square number equals the number of dots within a given [[Taxicab geometry|city block distance]] of the center dot on a regular [[square lattice]]. While centered square numbers, like [[figurate number]]s in general, have few if any direct practical applications, they are sometimes studied in [[recreational mathematics]] for their elegant geometric and arithmetic properties. The figures for the first four centered square numbers are shown below: :{| |- align="center" valign="middle" style="line-height: 0;" |[[Image:GrayDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]] |- align="center" valign="top" | <math>C_{4,1} = 1</math> | | | <math>C_{4,2} = 5</math> | | | <math>C_{4,3} = 13</math> | | | <math>C_{4,4} = 25</math> |} Each centered square number is the sum of successive squares. Example: as shown in the following figure of [[Floyd's triangle]], 25 is a centered square number, and is the sum of the square 16 (yellow rhombus formed by shearing a square) and of the next smaller square, 9 (sum of two blue triangles): [[File:centered_square_numbers_vs_triangular_numbers.svg|thumb|Centered square numbers (in red) are in the center of odd rows of Floyd's triangle.]] == Relationships with other figurate numbers == Let ''C''<sub>''k'',''n''</sub> generally represent the ''n''th [[Centered polygonal number|centered ''k''-gonal number]]. The ''n''th centered square number is given by the formula: :<math>C_{4,n} = n^2 + (n - 1)^2.</math> That is, the ''n''th centered square number is the sum of the ''n''th and the (''n'' β 1)th [[square number]]s. The following pattern demonstrates this formula: :{| |- align="center" valign="middle" style="line-height: 0;" |[[Image:GrayDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] |- align="center" valign="top" | <math>C_{4,1} = 0 + 1</math> | | | <math>C_{4,2} = 1 + 4</math> | | | <math>C_{4,3} = 4 + 9</math> | | | <math>C_{4,4} = 9 + 16</math> |} The formula can also be expressed as: :<math>C_{4,n} = \frac{(2n-1)^2 + 1}{2}.</math> That is, the ''n''th centered square number is half of the ''n''th odd square number plus 1, as illustrated below: :{| |- align="center" valign="bottom" style="line-height: 0;" |[[Image:GrayDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]] |- align="center" valign="top" | <math>C_{4,1} = \frac{1 + 1}{2}</math> | | | <math>C_{4,2} = \frac{9 + 1}{2}</math> | | | <math>C_{4,3} = \frac{25 + 1}{2}</math> | | | <math>C_{4,4} = \frac{49 + 1}{2}</math> |} Like all [[centered polygonal number]]s, centered square numbers can also be expressed in terms of [[triangular number]]s: :<math>C_{4,n} = 1 + 4\ T_{n-1} = 1 + 2{n(n-1)},</math> where :<math>T_n = \frac{n(n+1)}{2} = \binom{n+1}{2}</math> is the ''n''th triangular number. This can be easily seen by removing the center dot and dividing the rest of the figure into four triangles, as below: :{| |- align="center" valign="middle" style="line-height: 0;" |[[Image:BlackDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] |- align="center" valign="top" | <math>C_{4,1} = 1</math> | | | <math>C_{4,2} = 1 + 4 \times 1</math> | | | <math>C_{4,3} = 1 + 4 \times 3</math> | | | <math>C_{4,4} = 1 + 4 \times 6</math> |} The difference between two consecutive [[octahedral number]]s is a centered square number (Conway and Guy, p.50). Another way the centered square numbers can be expressed is: :<math>C_{4,n} = 1 + 4 \dim (SO(n)),</math> where :<math>\dim (SO(n)) = \frac{n(n-1)}{2}.</math> Yet another way the centered square numbers can be expressed is in terms of the [[centered triangular number]]s: :<math>C_{4,n} = \frac{4C_{3,n}-1}{3},</math> where :<math>C_{3,n} = 1 + 3\frac{n(n-1)}{2}.</math> == List of centered square numbers == The first centered square numbers (''C''<sub>4,''n''</sub> < 4500) are: :[[1 (number)|1]], [[5 (number)|5]], [[13 (number)|13]], [[25 (number)|25]], [[41 (number)|41]], [[61 (number)|61]], [[85 (number)|85]], [[113 (number)|113]], [[145 (number)|145]], [[181 (number)|181]], [[221 (number)|221]], 265, [[313 (number)|313]], [[365 (number)|365]], 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, β¦ {{OEIS|id=A001844}}. == Properties == All centered square numbers are odd, and in base 10 one can notice the one's digit follows the pattern 1-5-3-5-1. All centered square numbers and their divisors have a remainder of 1 when divided by 4. Hence all centered square numbers and their divisors end with digit 1 or 5 in base [[Senary|6]], [[Octal|8]], and [[Duodecimal|12]]. Every centered square number except 1 is the [[hypotenuse]] of a [[Pythagorean triple]] (3-4-'''5''', 5-12-'''13''', 7-24-'''25''', ...). This is exactly the sequence of Pythagorean triples where the two longest sides differ by 1. (Example: 5<sup>2</sup> + 12<sup>2</sup> = '''13'''<sup>2</sup>.) This is a consequence of (2''n'' − 1)<sup>2</sup> + (2''n''<sup>2</sup> − 2''n'')<sup>2</sup> = (2''n''<sup>2</sup> − 2''n'' + 1)<sup>2</sup>. == Generating function == The generating function that gives the centered square numbers is: :<math>\frac{(x+1)^2}{(1-x)^3}= 1+5x+13x^2+25x^3+41x^4+~...~. </math> == References == *{{citation | last = Alfred | first = U. | mr = 1571197 | issue = 3 | journal = Mathematics Magazine | pages = 155β164 | title = {{math|''n''}} and {{math|''n'' + 1}} consecutive integers with equal sums of squares | jstor = 2688938 | volume = 35 | year = 1962| doi = 10.1080/0025570X.1962.11975326 }}. *{{Apostol IANT}}. *{{citation | last = Beiler | first = A. H. | location = New York | page = 125 | publisher = Dover | title = Recreations in the Theory of Numbers | year = 1964}}. *{{citation | last1 = Conway | first1 = John H. | author1-link = John Horton Conway | last2 = Guy | first2 = Richard K. | author2-link = Richard K. Guy | mr = 1411676 | isbn = 0-387-97993-X | location = New York | pages = [https://archive.org/details/bookofnumbers0000conw/page/41 41β42] | publisher = Copernicus | title = The Book of Numbers | year = 1996 | url = https://archive.org/details/bookofnumbers0000conw/page/41 }}. {{Figurate numbers}} {{Classes of natural numbers}} [[Category:Figurate numbers]] [[Category:Quadrilaterals]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Apostol IANT
(
edit
)
Template:Citation
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Figurate numbers
(
edit
)
Template:No footnotes
(
edit
)
Template:OEIS
(
edit
)
Template:Short description
(
edit
)
Template:Use American English
(
edit
)
Template:Use mdy dates
(
edit
)