Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev's sum inequality
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{For|the similarly named inequality in [[probability theory]]|Chebyshev's inequality}} In [[mathematics]], '''Chebyshev's sum inequality''', named after [[Pafnuty Chebyshev]], states that if :<math>a_1 \geq a_2 \geq \cdots \geq a_n \quad</math> and <math>\quad b_1 \geq b_2 \geq \cdots \geq b_n,</math> then :<math>{1 \over n} \sum_{k=1}^n a_k b_k \geq \left({1 \over n}\sum_{k=1}^n a_k\right)\!\!\left({1 \over n}\sum_{k=1}^n b_k\right)\!.</math> Similarly, if :<math>a_1 \leq a_2 \leq \cdots \leq a_n \quad</math> and <math>\quad b_1 \geq b_2 \geq \cdots \geq b_n,</math> then :<math>{1 \over n} \sum_{k=1}^n a_k b_k \leq \left({1 \over n}\sum_{k=1}^n a_k\right)\!\!\left({1 \over n}\sum_{k=1}^n b_k\right)\!.</math><ref>{{cite book|mr=0944909|last=Hardy|first=G. H.|last2=Littlewood|first2=J. E.|last3=Pólya|first3=G.|title=Inequalities|series=Cambridge Mathematical Library|publisher=Cambridge University Press|location=Cambridge|year=1988|isbn=0-521-35880-9}}</ref> ==Proof== Consider the sum :<math>S = \sum_{j=1}^n \sum_{k=1}^n (a_j - a_k) (b_j - b_k).</math> The two [[sequence]]s are [[Sequence#Increasing and decreasing|non-increasing]], therefore {{math|''a''<sub>''j''</sub> − ''a''<sub>''k''</sub>}} and {{math|''b''<sub>''j''</sub> − ''b''<sub>''k''</sub>}} have the same sign for any {{math|''j'', ''k''}}. Hence {{math|''S'' ≥ 0}}. Opening the brackets, we deduce: :<math>0 \leq 2 n \sum_{j=1}^n a_j b_j - 2 \sum_{j=1}^n a_j \, \sum_{j=1}^n b_j,</math> hence :<math>\frac{1}{n} \sum_{j=1}^n a_j b_j \geq \left( \frac{1}{n} \sum_{j=1}^n a_j\right)\!\!\left(\frac{1}{n} \sum_{j=1}^n b_j\right)\!.</math> An alternative [[mathematical proof|proof]] is simply obtained with the [[rearrangement inequality]], writing that :<math>\sum_{i=0}^{n-1} a_i \sum_{j=0}^{n-1} b_j = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_i b_j =\sum_{i=0}^{n-1}\sum_{k=0}^{n-1} a_i b_{i+k~\text{mod}~n} = \sum_{k=0}^{n-1} \sum_{i=0}^{n-1} a_i b_{i+k~\text{mod}~n} \leq \sum_{k=0}^{n-1} \sum_{i=0}^{n-1} a_ib_i = n \sum_i a_ib_i.</math> ==Continuous version== There is also a continuous version of Chebyshev's sum inequality: If ''f'' and ''g'' are [[real number|real]]-valued, [[integrable function]]s over [''a'', ''b''], both non-increasing or both non-decreasing, then :<math>\frac{1}{b-a} \int_a^b f(x)g(x) \,dx \geq\! \left(\frac{1}{b-a} \int_a^b f(x) \,dx\right)\!\!\left(\frac{1}{b-a}\int_a^b g(x) \,dx\right)</math> with the [[inequality (mathematics)|inequality]] reversed if one is non-increasing and the other is non-decreasing. ==See also== * [[Hardy–Littlewood inequality]] * [[Rearrangement inequality]] ==Notes== {{Reflist}} {{DEFAULTSORT:Chebyshev's Sum Inequality}} [[Category:Inequalities (mathematics)]] [[Category:Sequences and series]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:For
(
edit
)
Template:Math
(
edit
)
Template:Reflist
(
edit
)