Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chern–Simons form
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Secondary characteristic classes of 3-manifolds}} In [[mathematics]], the '''Chern–Simons forms''' are certain secondary [[characteristic class]]es.<ref>{{Cite web|title=Remarks on Chern–Simons theory|url=https://www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01243-9/S0273-0979-09-01243-9.pdf|last=Freed|first=Daniel|date=January 15, 2009|access-date=April 1, 2020}}</ref> The theory is named for [[Shiing-Shen Chern]] and [[James Harris Simons]], co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose.<ref>{{Cite book|last1=Chern|first1=Shiing-Shen|url=https://books.google.com/books?id=uOfSa0sfJr0C&q=Characteristic+Forms+and+Geometric+Invariants&pg=PA363|title=A Mathematician and His Mathematical Work: Selected Papers of S.S. Chern|last2=Tian|first2=G.|last3=Li|first3=Peter|date=1996|publisher=World Scientific|isbn=978-981-02-2385-4|language=en}}</ref> ==Definition== Given a [[manifold]] and a [[Lie algebra]] valued [[Multilinear form|1-form]] <math>\mathbf{A}</math> over it, we can define a family of [[Multilinear form|''p''-forms]]:<ref>{{Cite web|title=Chern-Simons form in nLab|url=https://ncatlab.org/nlab/show/Chern-Simons+form|website=ncatlab.org|access-date=May 1, 2020}}</ref> In one dimension, the '''Chern–Simons''' [[Multilinear form|1-form]] is given by :<math>\operatorname{Tr} [ \mathbf{A} ].</math> In three dimensions, the '''Chern–Simons 3-form''' is given by :<math>\operatorname{Tr} \left[ \mathbf{F} \wedge \mathbf{A}-\frac{1}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \right] = \operatorname{Tr} \left[ d\mathbf{A} \wedge \mathbf{A} + \frac{2}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}\right].</math> In five dimensions, the '''Chern–Simons 5-form''' is given by :<math> \begin{align} & \operatorname{Tr} \left[ \mathbf{F}\wedge\mathbf{F} \wedge \mathbf{A}-\frac{1}{2} \mathbf{F} \wedge\mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} +\frac{1}{10} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge\mathbf{A} \right] \\[6pt] = {} & \operatorname{Tr} \left[ d\mathbf{A}\wedge d\mathbf{A} \wedge \mathbf{A} + \frac{3}{2} d\mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} +\frac{3}{5} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} \right] \end{align} </math> where the curvature '''F''' is defined as :<math>\mathbf{F} = d\mathbf{A}+\mathbf{A}\wedge\mathbf{A}.</math> The general Chern–Simons form <math>\omega_{2k-1}</math> is defined in such a way that :<math>d\omega_{2k-1}= \operatorname{Tr}(F^k),</math> where the [[wedge product]] is used to define ''F<sup>k</sup>''. The right-hand side of this equation is proportional to the ''k''-th [[Chern character]] of the connection <math>\mathbf{A}</math>. In general, the Chern–Simons [[Multilinear form|''p''-form]] is defined for any odd ''p''.<ref>{{Cite web|title=Introduction To Chern-Simons Theories|url=http://www.physics.rutgers.edu/~gmoore/TASI-ChernSimons-StudentNotes.pdf|last=Moore|first=Greg|date=June 7, 2019|website=University of Texas|access-date=June 7, 2019}}</ref> == Application to physics== In 1978, [[Albert Schwarz]] formulated [[Chern–Simons theory]], early [[topological quantum field theory]], using Chern-Simons forms.<ref>{{cite journal |last=Schwartz |first=A. S. |year=1978 |title=The partition function of degenerate quadratic functional and Ray-Singer invariants |journal=Letters in Mathematical Physics |volume=2 |issue=3 |pages=247–252 |doi=10.1007/BF00406412 |bibcode=1978LMaPh...2..247S |s2cid=123231019 }}</ref> In the [[gauge theory]], the [[Differential form|integral]] of Chern-Simons form is a global geometric invariant, and is typically [[gauge invariant]] modulo addition of an integer. ==See also== *[[Chern–Weil homomorphism]] *[[Chiral anomaly]] *[[Topological quantum field theory]] *[[Jones polynomial]] ==References== {{Reflist}} == Further reading == * {{cite journal |last1=Chern |first1=S.-S. |author-link1=Shiing-Shen Chern |last2=Simons |first2=J. |author-link2=James Harris Simons |title=Characteristic forms and geometric invariants |journal=[[Annals of Mathematics]] |series=Second Series |volume=99 |number=1 |year=1974 |pages=48–69 |jstor=1971013 |doi=10.2307/1971013 }} * {{cite book |first=Reinhold A. |last=Bertlmann |chapter=Chern–Simons form, homotopy operator and anomaly |title=Anomalies in Quantum Field Theory |publisher=[[Clarendon Press]] |year=2001 |edition=Revised |pages=321–341 |isbn=0-19-850762-3 |chapter-url=https://books.google.com/books?id=FC_DRRUHFXEC&pg=PA321 }} {{String theory topics |state=collapsed}} {{DEFAULTSORT:Chern-Simons form}} [[Category:Homology theory]] [[Category:Algebraic topology]] [[Category:Differential geometry]] [[Category:String theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:String theory topics
(
edit
)