Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chi-squared distribution
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Probability distribution and special case of gamma distribution}} {{About|the mathematics of the chi-squared distribution|its uses in statistics|chi-squared test|the music group|Chi2 (band)}} {{Probability distribution | name = Chi-squared | type = density | pdf_image = [[File:Chi-square pdf.svg|321px]] | cdf_image = [[File:Chi-square cdf.svg|321px]] | notation = <math>\chi^2(k)\;</math> or <math>\chi^2_k\!</math> | parameters = <math>k \in \mathbb{N}^{*}~~</math> (known as "degrees of freedom") | support = <math>x \in (0, +\infty)\;</math> | pdf = <math>\frac{1}{2^{k/2}\Gamma(k/2)}\; x^{k/2-1} e^{-x/2}\; </math> | cdf = <math>\frac{1}{\Gamma(k/2 )} \; \gamma\left(\frac{k}{2},\,\frac{x}{2}\right)\;</math> | mean = <math>k</math> | median = <math>\approx k\bigg(1-\frac{2}{9k}\bigg)^3\;</math> | mode = <math>\max(k-2,0)\;</math> | variance = <math>2k\;</math> | skewness = <math>\sqrt{8/k}\,</math> | kurtosis = <math>\frac{12}{k}</math> | entropy = <math>\begin{align}\frac{k}{2}&+\log\left(2\Gamma\Bigl(\frac{k}{2}\Bigr)\right) \\ &\!+\left(1-\frac{k}{2}\right)\psi\left(\frac{k}{2}\right)\end{align}</math> | mgf = <math>(1-2t)^{-k/2} \text{ for } t < \frac{1}{2}\;</math> | char = <math>(1-2it)^{-k/2}</math><ref>{{cite web | url=http://www.planetmathematics.com/CentralChiDistr.pdf | title=Characteristic function of the central chi-square distribution | author=M.A. Sanders | access-date=2009-03-06 | archive-url=https://web.archive.org/web/20110715091705/http://www.planetmathematics.com/CentralChiDistr.pdf | archive-date=2011-07-15 | url-status=dead }}</ref> |pgf=<math>(1-2\ln t)^{-k/2} \text{ for } 0<t<\sqrt{e}\;</math>}} In [[probability theory]] and [[statistics]], the '''<math>\chi^2</math>-distribution''' with <math>k</math> [[Degrees of freedom (statistics)|degrees of freedom]] is the distribution of a sum of the squares of <math>k</math> [[Independence (probability theory)|independent]] [[standard normal]] random variables.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Chi-Squared Distribution |url=https://mathworld.wolfram.com/Chi-SquaredDistribution.html |access-date=2024-10-11 |website=mathworld.wolfram.com |language=en}}</ref> The chi-squared distribution <math> \chi^2_k </math> is a special case of the [[gamma distribution]] and the univariate [[Wishart distribution]]. Specifically if <math> X \sim \chi^2_k </math> then <math> X \sim \text{Gamma}(\alpha=\frac{k}{2}, \theta=2) </math> (where <math>\alpha</math> is the shape parameter and <math>\theta</math> the scale parameter of the gamma distribution) and <math> X \sim \text{W}_1(1,k) </math>. The '''scaled chi-squared distribution''' <math>s^2 \chi^2_k </math> is a reparametrization of the [[gamma distribution]] and the univariate [[Wishart distribution]]. Specifically if <math> X \sim s^2 \chi^2_k </math> then <math> X \sim \text{Gamma}(\alpha=\frac{k}{2}, \theta=2 s^2) </math> and <math> X \sim \text{W}_1(s^2,k) </math>. The chi-squared distribution is one of the most widely used [[probability distribution]]s in [[inferential statistics]], notably in [[hypothesis testing]] and in construction of [[confidence interval]]s.<ref name="United States Department of Commerce, National Bureau of Standards; Dover Publications-1983">{{Abramowitz Stegun ref|26|940}}</ref><ref>NIST (2006). [http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Engineering Statistics Handbook – Chi-Squared Distribution]</ref><ref name="Johnson-1994">{{cite book | last1 = Johnson | first1 = N. L. | first2 = S. |last2=Kotz |first3=N. |last3=Balakrishnan | title = Continuous Univariate Distributions |edition=Second |volume=1 |chapter=Chi-Square Distributions including Chi and Rayleigh |pages=415–493 | publisher = John Wiley and Sons | year = 1994 | isbn = 978-0-471-58495-7 }}</ref><ref>{{cite book | last1 = Mood | first1 = Alexander | first2=Franklin A. |last2=Graybill |first3=Duane C. |last3=Boes | title = Introduction to the Theory of Statistics |edition=Third |pages=241–246 | publisher = McGraw-Hill | year = 1974 | isbn = 978-0-07-042864-5 }}</ref> This distribution is sometimes called the '''central chi-squared distribution''', a special case of the more general [[noncentral chi-squared distribution]].<ref>{{Cite web |title=The Chi-Squared Distribution |url=https://uregina.ca/~gingrich/appchi.pdf |website=University of Regina}}</ref> The chi-squared distribution is used in the common [[chi-squared test]]s for [[goodness of fit]] of an observed distribution to a theoretical one, the [[statistical independence|independence]] of two criteria of classification of [[data analysis|qualitative data]], and in finding the confidence interval for estimating the population [[standard deviation]] of a normal distribution from a sample standard deviation. Many other statistical tests also use this distribution, such as [[Friedman test|Friedman's analysis of variance by ranks]]. == Definitions == If {{math|''Z''<sub>1</sub>, ..., ''Z''<sub>''k''</sub>}} are [[independence (probability theory)|independent]], [[standard normal]] random variables, then the sum of their squares, : <math>X\ = \sum_{i=1}^k Z_i^2,</math> is distributed according to the chi-squared distribution with {{mvar|k}} degrees of freedom. This is usually denoted as : <math> X\ \sim\ \chi^2(k)\ \ \text{or}\ \ X\ \sim\ \chi^2_k.</math> The chi-squared distribution has one parameter: a positive integer {{mvar|k}} that specifies the number of [[degrees of freedom (statistics)|degrees of freedom]] (the number of random variables being summed, ''Z''<sub>''i''</sub> s). === Introduction === The chi-squared distribution is used primarily in hypothesis testing, and to a lesser extent for confidence intervals for population variance when the underlying distribution is normal. Unlike more widely known distributions such as the [[normal distribution]] and the [[exponential distribution]], the chi-squared distribution is not as often applied in the direct modeling of natural phenomena. It arises in the following hypothesis tests, among others: * [[Pearson's chi-squared test|Chi-squared test]] of independence in [[contingency tables]] * [[Pearson's chi-squared test|Chi-squared test]] of goodness of fit of observed data to hypothetical distributions * [[Likelihood-ratio test]] for nested models * [[Log-rank test]] in survival analysis * [[Cochran–Mantel–Haenszel test]] for stratified contingency tables * [[Wald test]] * [[Score test]] It is also a component of the definition of the [[Student's t-distribution|''t''-distribution]] and the [[F-distribution|''F''-distribution]] used in ''t''-tests, analysis of variance, and regression analysis. The primary reason for which the chi-squared distribution is extensively used in hypothesis testing is its relationship to the normal distribution. Many hypothesis tests use a test statistic, such as the [[t-statistic|''t''-statistic]] in a ''t''-test. For these hypothesis tests, as the sample size, {{mvar|n}}, increases, the [[sampling distribution]] of the test statistic approaches the normal distribution ([[central limit theorem]]). Because the test statistic (such as {{mvar|t}}) is asymptotically normally distributed, provided the sample size is sufficiently large, the distribution used for hypothesis testing may be approximated by a normal distribution. Testing hypotheses using a normal distribution is well understood and relatively easy. The simplest chi-squared distribution is the square of a standard normal distribution. So wherever a normal distribution could be used for a hypothesis test, a chi-squared distribution could be used. Suppose that <math>Z</math> is a random variable sampled from the standard normal distribution, where the mean is <math>0</math> and the variance is <math>1</math>: <math>Z \sim N(0,1)</math>. Now, consider the random variable <math>X = Z^2</math>. The distribution of the random variable <math>X</math> is an example of a chi-squared distribution: <math>\ X\ \sim\ \chi^2_1</math>. The subscript 1 indicates that this particular chi-squared distribution is constructed from only 1 standard normal distribution. A chi-squared distribution constructed by squaring a single standard normal distribution is said to have 1 degree of freedom. Thus, as the sample size for a hypothesis test increases, the distribution of the test statistic approaches a normal distribution. Just as extreme values of the normal distribution have low probability (and give small p-values), extreme values of the chi-squared distribution have low probability. An additional reason that the chi-squared distribution is widely used is that it turns up as the large sample distribution of generalized [[Likelihood-ratio test|likelihood ratio tests]] (LRT).<ref name="Westfall-2013">{{cite book|last1=Westfall|first1=Peter H.|title=Understanding Advanced Statistical Methods|date=2013|publisher=CRC Press|location=Boca Raton, FL|isbn=978-1-4665-1210-8}}</ref> LRTs have several desirable properties; in particular, simple LRTs commonly provide the highest power to reject the null hypothesis ([[Neyman–Pearson lemma]]) and this leads also to optimality properties of generalised LRTs. However, the normal and chi-squared approximations are only valid asymptotically. For this reason, it is preferable to use the ''t'' distribution rather than the normal approximation or the chi-squared approximation for a small sample size. Similarly, in analyses of contingency tables, the chi-squared approximation will be poor for a small sample size, and it is preferable to use [[Fisher's exact test]]. Ramsey shows that the exact [[binomial test]] is always more powerful than the normal approximation.<ref name="Ramsey-1988">{{cite journal|last1=Ramsey|first1=PH|title=Evaluating the Normal Approximation to the Binomial Test|journal=Journal of Educational Statistics|date=1988|volume=13|issue=2|pages=173–82|doi=10.2307/1164752|jstor=1164752}}</ref> Lancaster shows the connections among the binomial, normal, and chi-squared distributions, as follows.<ref name="Lancaster-1969">{{Citation |last=Lancaster |first=H.O. |title=The Chi-squared Distribution |year=1969 |publisher=Wiley }}</ref> De Moivre and Laplace established that a binomial distribution could be approximated by a normal distribution. Specifically they showed the asymptotic normality of the random variable :<math> \chi = {m - Np \over \sqrt{Npq}} </math> where <math>m</math> is the observed number of successes in <math>N</math> trials, where the probability of success is <math>p</math>, and <math>q = 1 - p</math>. Squaring both sides of the equation gives : <math style="block"> \chi^2 = {(m - Np)^2\over Npq} </math> Using <math>N = Np + N(1 - p)</math>, <math>N = m + (N - m)</math>, and <math>q = 1 - p</math>, this equation can be rewritten as : <math style="block"> \chi^2 = {(m - Np)^2\over Np} + {(N - m - Nq)^2\over Nq} </math> The expression on the right is of the form that [[Karl Pearson]] would generalize to the form : <math style="block"> \chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} </math> where <math style="block"> \chi^2</math> = Pearson's cumulative test statistic, which asymptotically approaches a <math>\chi^2</math> distribution; <math style="block">O_i</math> = the number of observations of type <math>i</math>; <math style="block">E_i = N p_i</math> = the expected (theoretical) frequency of type <math>i</math>, asserted by the null hypothesis that the fraction of type <math>i</math> in the population is <math> p_i</math>; and <math style="block">n</math> = the number of cells in the table.{{cn|date=November 2023}} In the case of a binomial outcome (flipping a coin), the binomial distribution may be approximated by a normal distribution (for sufficiently large <math>n</math>). Because the square of a standard normal distribution is the chi-squared distribution with one degree of freedom, the probability of a result such as 1 heads in 10 trials can be approximated either by using the normal distribution directly, or the chi-squared distribution for the normalised, squared difference between observed and expected value. However, many problems involve more than the two possible outcomes of a binomial, and instead require 3 or more categories, which leads to the multinomial distribution. Just as de Moivre and Laplace sought for and found the normal approximation to the binomial, Pearson sought for and found a degenerate multivariate normal approximation to the multinomial distribution (the numbers in each category add up to the total sample size, which is considered fixed). Pearson showed that the chi-squared distribution arose from such a multivariate normal approximation to the multinomial distribution, taking careful account of the statistical dependence (negative correlations) between numbers of observations in different categories.<ref name="Lancaster-1969" /> === Probability density function === The [[probability density function]] (pdf) of the chi-squared distribution is :<math> f(x;\,k) = \begin{cases} \dfrac{x^{k/2 -1} e^{-x/2}}{2^{k/2} \Gamma\left(\frac k 2 \right)}, & x > 0; \\ 0, & \text{otherwise}. \end{cases} </math> where <math display="inline">\Gamma(k/2)</math> denotes the [[gamma function]], which has [[particular values of the gamma function|closed-form values for integer <math>k</math>]]. For derivations of the pdf in the cases of one, two and <math>k</math> degrees of freedom, see [[Proofs related to chi-squared distribution]]. === Cumulative distribution function === [[File:Chernoff-bound.svg|thumb|400px|Chernoff bound for the [[Cumulative distribution function|CDF]] and tail (1-CDF) of a chi-squared random variable with ten degrees of freedom (<math>k = 10</math>)]] Its [[cumulative distribution function]] is: : <math> F(x;\,k) = \frac{\gamma(\frac{k}{2},\,\frac{x}{2})}{\Gamma(\frac{k}{2})} = P\left(\frac{k}{2},\,\frac{x}{2}\right), </math> where <math>\gamma(s,t)</math> is the [[lower incomplete gamma function]] and <math display="inline">P(s,t)</math> is the [[Incomplete gamma function#Regularized gamma functions and Poisson random variables|regularized gamma function]]. In a special case of <math>k = 2</math> this function has the simple form: : <math> F(x;\,2) = 1 - e^{-x/2} </math> which can be easily derived by integrating <math>f(x;\,2)=\frac{1}{2}e^{-x/2}</math> directly. The integer recurrence of the gamma function makes it easy to compute <math>F(x;\,k)</math> for other small, even <math>k</math>. Tables of the chi-squared cumulative distribution function are widely available and the function is included in many [[spreadsheet]]s and all [[statistical packages]]. Letting <math>z \equiv x/k</math>, [[Chernoff bound#The first step in the proof of Chernoff bounds|Chernoff bounds]] on the lower and upper tails of the CDF may be obtained.<ref>{{cite journal |last1=Dasgupta |first1=Sanjoy D. A. |last2=Gupta |first2=Anupam K. |date=January 2003 |title=An Elementary Proof of a Theorem of Johnson and Lindenstrauss |journal=Random Structures and Algorithms |volume=22 |issue=1 |pages=60–65 |doi=10.1002/rsa.10073 |s2cid=10327785 |url=http://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf |access-date=2012-05-01 }}</ref> For the cases when <math>0 < z < 1</math> (which include all of the cases when this CDF is less than half): <math style="block"> F(z k;\,k) \leq (z e^{1-z})^{k/2}.</math> The tail bound for the cases when <math>z > 1</math>, similarly, is : <math> 1-F(z k;\,k) \leq (z e^{1-z})^{k/2}. </math> For another [[approximation]] for the CDF modeled after the cube of a Gaussian, see under [[Noncentral chi-squared distribution#Approximation|Noncentral chi-squared distribution]]. == Properties == === Cochran's theorem === {{Main|Cochran's theorem}} The following is a special case of Cochran's theorem. '''Theorem.''' If <math>Z_1,...,Z_n</math> are [[independence (probability theory)|independent]] identically distributed (i.i.d.), [[standard normal]] random variables, then <math>\sum_{t=1}^n(Z_t - \bar Z)^2 \sim \chi^2_{n-1}</math> where <math>\bar Z = \frac{1}{n} \sum_{t=1}^n Z_t.</math> {{hidden begin|style=width:100%|ta1=center|border=1px #aaa solid|title=[Proof]}} '''Proof.''' Let <math>Z\sim\mathcal{N}(\bar 0,1\!\!1)</math> be a vector of <math>n</math> independent normally distributed random variables, and <math>\bar Z</math> their average. Then <math> \sum_{t=1}^n(Z_t-\bar Z)^2 ~=~ \sum_{t=1}^n Z_t^2 -n\bar Z^2 ~=~ Z^\top[1\!\!1 -{\textstyle\frac1n}\bar 1\bar 1^\top]Z ~=:~ Z^\top\!M Z </math> where <math>1\!\!1</math> is the identity matrix and <math>\bar 1</math> the all ones vector. <math>M</math> has one eigenvector <math>b_1:={\textstyle\frac{1}{\sqrt{n}}} \bar 1</math> with eigenvalue <math>0</math>, and <math>n-1</math> eigenvectors <math>b_2,...,b_n</math> (all orthogonal to <math>b_1</math>) with eigenvalue <math>1</math>, which can be chosen so that <math>Q:=(b_1,...,b_n)</math> is an orthogonal matrix. Since also <math>X:=Q^\top\!Z\sim\mathcal{N}(\bar 0,Q^\top\!1\!\!1 Q) =\mathcal{N}(\bar 0,1\!\!1)</math>, we have <math> \sum_{t=1}^n(Z_t-\bar Z)^2 ~=~ Z^\top\!M Z ~=~ X^\top\!Q^\top\!M Q X ~=~ X_2^2+...+X_n^2 ~\sim~ \chi^2_{n-1}, </math> which proves the claim. {{hidden end}} === Additivity === It follows from the definition of the chi-squared distribution that the sum of independent chi-squared variables is also chi-squared distributed. Specifically, if <math>X_i,i=\overline{1,n}</math> are independent chi-squared variables with <math>k_i</math>, <math>i=\overline{1,n} </math> degrees of freedom, respectively, then <math>Y = X_1 + \cdots + X_n</math> is chi-squared distributed with <math>k_1 + \cdots + k_n</math> degrees of freedom. === Sample mean === The sample mean of <math>n</math> [[i.i.d.]] chi-squared variables of degree <math>k</math> is distributed according to a gamma distribution with shape <math>\alpha</math> and scale <math>\theta</math> parameters: :<math> \overline X = \frac{1}{n} \sum_{i=1}^n X_i \sim \operatorname{Gamma}\left(\alpha=n\, k /2, \theta= 2/n \right) \qquad \text{where } X_i \sim \chi^2(k)</math> [[#Asymptotic properties|Asymptotically]], given that for a shape parameter <math> \alpha </math> going to infinity, a Gamma distribution converges towards a normal distribution with expectation <math> \mu = \alpha\cdot \theta </math> and variance <math> \sigma^2 = \alpha\, \theta^2 </math>, the sample mean converges towards: <math style="block"> \overline X \xrightarrow{n \to \infty} N(\mu = k, \sigma^2 = 2\, k /n ) </math> Note that we would have obtained the same result invoking instead the [[central limit theorem]], noting that for each chi-squared variable of degree <math>k</math> the expectation is <math> k </math> , and its variance <math> 2\,k </math> (and hence the variance of the sample mean <math> \overline{X}</math> being <math> \sigma^2 = \frac{2k}{n} </math>). === Entropy === The [[differential entropy]] is given by : <math> h = \int_{0}^\infty f(x;\,k)\ln f(x;\,k) \, dx = \frac k 2 + \ln \left[2\,\Gamma \left(\frac k 2 \right)\right] + \left(1-\frac k 2 \right)\, \psi\!\left(\frac k 2 \right), </math> where <math>\psi(x)</math> is the [[Digamma function]]. The chi-squared distribution is the [[maximum entropy probability distribution]] for a random variate <math>X</math> for which <math>\operatorname{E}(X)=k</math> and <math>\operatorname{E}(\ln(X))=\psi(k/2)+\ln(2)</math> are fixed. Since the chi-squared is in the family of gamma distributions, this can be derived by substituting appropriate values in the [[gamma distribution#Logarithmic expectation and variance|Expectation of the log moment of gamma]]. For derivation from more basic principles, see the derivation in [[exponential family#Moment-generating function of the sufficient statistic|moment-generating function of the sufficient statistic]]. === Noncentral moments === The noncentral moments (raw moments) of a chi-squared distribution with <math>k</math> degrees of freedom are given by<ref>[http://mathworld.wolfram.com/Chi-SquaredDistribution.html Chi-squared distribution], from [[MathWorld]], retrieved Feb. 11, 2009</ref><ref>M. K. Simon, ''Probability Distributions Involving Gaussian Random Variables'', New York: Springer, 2002, eq. (2.35), {{ISBN|978-0-387-34657-1}}</ref> : <math> \operatorname{E}(X^m) = k (k+2) (k+4) \cdots (k+2m-2) = 2^m \frac{\Gamma\left(m+\frac{k}{2}\right)}{\Gamma\left(\frac{k}{2}\right)}. </math> === Cumulants === The [[cumulant]]s are readily obtained by a [[power series]] expansion of the logarithm of the characteristic function: : <math>\kappa_n = 2^{n-1}(n-1)!\,k</math> with [[cumulant generating function]] <math>\ln E[e^{tX}] = - \frac k2 \ln(1-2t) </math>. === Concentration === The chi-squared distribution exhibits strong concentration around its mean. The standard Laurent-Massart<ref>{{Cite journal |last1=Laurent |first1=B. |last2=Massart |first2=P. |date=2000-10-01 |title=Adaptive estimation of a quadratic functional by model selection |journal=The Annals of Statistics |volume=28 |issue=5 |doi=10.1214/aos/1015957395 |s2cid=116945590 |issn=0090-5364|doi-access=free }}</ref> bounds are: : <math>\operatorname{P}(X - k \ge 2 \sqrt{k x} + 2x) \le \exp(-x)</math> : <math>\operatorname{P}(k - X \ge 2 \sqrt{k x}) \le \exp(-x)</math> One consequence is that, if <math>Z \sim N(0, 1)^k</math> is a gaussian random vector in <math>\R^k</math>, then as the dimension <math>k</math> grows, the squared length of the vector is concentrated tightly around <math>k</math> with a width <math>k^{1/2 + \alpha}</math>:<math display="block">Pr(\|Z\|^2 \in [k - 2k^{1/2+\alpha}, k + 2k^{1/2+\alpha} + 2k^{\alpha}]) \geq 1-e^{-k^\alpha}</math>where the exponent <math>\alpha</math> can be chosen as any value in <math>\R</math>. Since the cumulant generating function for <math>\chi^2(k)</math> is <math>K(t) = -\frac k2 \ln(1-2t) </math>, and its [[Convex conjugate|convex dual]] is <math>K^*(q) = \frac 12 (q-k + k\ln\frac kq) </math>, the standard [[Chernoff bound]] yields<math display="block">\begin{aligned} \ln Pr(X \geq (1 + \epsilon) k) &\leq -\frac k2 ( \epsilon - \ln(1+\epsilon)) \\ \ln Pr(X \leq (1 - \epsilon) k) &\leq -\frac k2 ( -\epsilon - \ln(1-\epsilon)) \end{aligned}</math>where <math>0< \epsilon < 1</math>. By the union bound,<math display="block">Pr(X \in (1\pm \epsilon ) k ) \geq 1 - 2e^{-\frac k2 (\frac 12 \epsilon^2 - \frac 13 \epsilon^3)} </math>This result is used in proving the [[Johnson–Lindenstrauss lemma]].<ref>[https://ocw.mit.edu/courses/18-s096-topics-in-mathematics-of-data-science-fall-2015/f9261308512f6b90e284599f94055bb4_MIT18_S096F15_Ses15_16.pdf MIT 18.S096 (Fall 2015): Topics in Mathematics of Data Science, Lecture 5, Johnson-Lindenstrauss Lemma and Gordons Theorem]</ref> === Asymptotic properties === [[File:Chi-square median approx.png|thumb|upright=1.818|Approximate formula for median (from the Wilson–Hilferty transformation) compared with numerical quantile (top); and difference ({{font color|blue|blue}}) and relative difference ({{font color|red|red}}) between numerical quantile and approximate formula (bottom). For the chi-squared distribution, only the positive integer numbers of degrees of freedom (circles) are meaningful.]] By the [[central limit theorem]], because the chi-squared distribution is the sum of <math>k</math> independent random variables with finite mean and variance, it converges to a normal distribution for large <math>k</math>. For many practical purposes, for <math>k>50</math> the distribution is sufficiently close to a [[normal distribution]], so the difference is ignorable.<ref>{{cite book|title=Statistics for experimenters|author=Box, Hunter and Hunter|publisher=Wiley|year=1978|isbn=978-0-471-09315-2|page=[https://archive.org/details/statisticsforexp00geor/page/118 118]|url-access=registration|url=https://archive.org/details/statisticsforexp00geor/page/118}}</ref> Specifically, if <math>X \sim \chi^2(k)</math>, then as <math>k</math> tends to infinity, the distribution of <math>(X-k)/\sqrt{2k}</math> [[convergence of random variables#Convergence in distribution|tends]] to a standard normal distribution. However, convergence is slow as the [[skewness]] is <math>\sqrt{8/k}</math> and the [[excess kurtosis]] is <math>12/k</math>. The sampling distribution of <math>\ln(\chi^2)</math> converges to normality much faster than the sampling distribution of <math>\chi^2</math>,<ref>{{cite journal |first1=M. S. |last1=Bartlett |first2=D. G. |last2=Kendall |title=The Statistical Analysis of Variance-Heterogeneity and the Logarithmic Transformation |journal=Supplement to the Journal of the Royal Statistical Society |volume=8 |issue=1 |year=1946 |pages=128–138 |jstor=2983618 |doi=10.2307/2983618 }}</ref> as the [[logarithmic transformation|logarithmic transform]] removes much of the asymmetry.<ref name="Pillai-2016">{{Cite journal|last=Pillai|first=Natesh S.|year=2016|title=An unexpected encounter with Cauchy and Lévy|journal=[[Annals of Statistics]]|volume=44|issue=5|pages=2089–2097|doi=10.1214/15-aos1407|arxiv=1505.01957|s2cid=31582370}}</ref> Other functions of the chi-squared distribution converge more rapidly to a normal distribution. Some examples are: * If <math>X \sim \chi^2(k)</math> then <math>\sqrt{2X}</math> is approximately normally distributed with mean <math>\sqrt{2k-1}</math> and unit variance (1922, by [[R. A. Fisher]], see (18.23), p. 426 of Johnson.<ref name="Johnson-1994" /> * If <math>X \sim \chi^2(k)</math> then <math>\sqrt[3]{X/k}</math> is approximately normally distributed with mean <math> 1-\frac{2}{9k}</math> and variance <math>\frac{2}{9k} .</math><ref>{{cite journal |last1=Wilson |first1=E. B. |last2=Hilferty |first2=M. M. |year=1931 |title=The distribution of chi-squared |journal=[[Proc. Natl. Acad. Sci. USA]] |volume=17 |issue=12 |pages=684–688 |bibcode=1931PNAS...17..684W |doi=10.1073/pnas.17.12.684 |pmid=16577411 |pmc=1076144 |doi-access=free }}</ref> This is known as the '''Wilson–Hilferty transformation''', see (18.24), p. 426 of Johnson.<ref name="Johnson-1994" /> ** This [[Data transformation (statistics)#Transforming to normality|normalizing transformation]] leads directly to the commonly used median approximation <math>k\bigg(1-\frac{2}{9k}\bigg)^3\;</math> by back-transforming from the mean, which is also the median, of the normal distribution. == Related distributions == {{More citations needed section|date=September 2011}} * As <math>k\to\infty</math>, <math> (\chi^2_k-k)/\sqrt{2k} ~ \xrightarrow{d}\ N(0,1) \,</math> ([[normal distribution]]) * <math> \chi_k^2 \sim {\chi'}^2_k(0)</math> ([[noncentral chi-squared distribution]] with non-centrality parameter <math> \lambda = 0 </math>) * If <math>Y \sim \mathrm{F}(\nu_1, \nu_2)</math> then <math>X = \lim_{\nu_2 \to \infty} \nu_1 Y</math> has the chi-squared distribution <math>\chi^2_{\nu_{1}}</math> :*As a special case, if <math>Y \sim \mathrm{F}(1, \nu_2)\,</math> then <math>X = \lim_{\nu_2 \to \infty} Y\,</math> has the chi-squared distribution <math>\chi^2_{1}</math> * <math> \|\boldsymbol{N}_{i=1,\ldots,k} (0,1) \|^2 \sim \chi^2_k </math> (The squared [[Norm (mathematics)|norm]] of ''k'' standard normally distributed variables is a chi-squared distribution with ''k'' [[degrees of freedom (statistics)|degrees of freedom]]) * If <math>X \sim \chi^2_\nu\,</math> and <math>c>0 \,</math>, then <math>cX \sim \Gamma(k=\nu/2, \theta=2c)\,</math>. ([[gamma distribution]]) * If <math>X \sim \chi^2_k</math> then <math>\sqrt{X} \sim \chi_k</math> ([[chi distribution]]) * If <math>X \sim \chi^2_2</math>, then <math>X \sim \operatorname{exp}(1/2)</math> is an [[exponential distribution]]. (See [[gamma distribution]] for more.) * If <math>X \sim \chi^2_{2k}</math>, then <math>X \sim \operatorname{Erlang}(k, 1/2)</math> is an [[Erlang distribution]]. * If <math> X \sim \operatorname{Erlang}(k,\lambda)</math>, then <math> 2\lambda X\sim \chi^2_{2k}</math> * If <math>X \sim \operatorname{Rayleigh}(1)\,</math> ([[Rayleigh distribution]]) then <math>X^2 \sim \chi^2_2\,</math> * If <math>X \sim \operatorname{Maxwell}(1)\,</math> ([[Maxwell distribution]]) then <math>X^2 \sim \chi^2_3\,</math> * If <math>X \sim \chi^2_\nu</math> then <math>\tfrac{1}{X} \sim \operatorname{Inv-}\chi^2_\nu\, </math> ([[Inverse-chi-squared distribution]]) * The chi-squared distribution is a special case of type III [[Pearson distribution]] * If <math>X \sim \chi^2_{\nu_1}\,</math> and <math>Y \sim \chi^2_{\nu_2}\,</math> are independent then <math>\tfrac{X}{X+Y} \sim \operatorname{Beta}(\tfrac{\nu_1}{2}, \tfrac{\nu_2}{2})\,</math> ([[beta distribution]]) * If <math> X \sim \operatorname{U}(0,1)\, </math> ([[Uniform distribution (continuous)|uniform distribution]]) then <math> -2\log(X) \sim \chi^2_2\,</math> * If <math>X_i \sim \operatorname{Laplace}(\mu,\beta)\,</math> then <math>\sum_{i=1}^n \frac{2 |X_i-\mu|}{\beta} \sim \chi^2_{2n}\,</math> * If <math>X_i</math> follows the [[generalized normal distribution]] (version 1) with parameters <math>\mu,\alpha,\beta</math> then <math>\sum_{i=1}^n \frac{2 |X_i-\mu|^\beta}{\alpha} \sim \chi^2_{2n/\beta}\,</math> <ref>{{cite journal |last= Bäckström |first= T. |author2=Fischer, J. |date=January 2018|title= Fast Randomization for Distributed Low-Bitrate Coding of Speech and Audio|journal= IEEE/ACM Transactions on Audio, Speech, and Language Processing |volume= 26|issue= 1|pages= 19–30|doi= 10.1109/TASLP.2017.2757601|s2cid= 19777585 |url= https://research.aalto.fi/files/27158975/ELEC_backstrom_et_al_Fast_randomization.pdf }}</ref> * The chi-squared distribution is a transformation of [[Pareto distribution]] * [[Student's t-distribution]] is a transformation of chi-squared distribution * [[Student's t-distribution]] can be obtained from chi-squared distribution and [[normal distribution]] * The [[noncentral beta distribution]] can be obtained as a transformation of chi-squared distribution and [[noncentral chi-squared distribution]] * The [[noncentral t-distribution]] can be obtained from normal distribution and chi-squared distribution A chi-squared variable with <math>k</math> degrees of freedom is defined as the sum of the squares of <math>k</math> independent [[standard normal]] random variables. If <math>Y</math> is a <math>k</math>-dimensional Gaussian random vector with mean vector <math>\mu</math> and rank <math>k</math> covariance matrix <math>C</math>, then <math>X = (Y-\mu )^{T}C^{-1}(Y-\mu)</math> is chi-squared distributed with <math>k</math> degrees of freedom. The sum of squares of [[statistically independent]] unit-variance Gaussian variables which do ''not'' have mean zero yields a generalization of the chi-squared distribution called the [[noncentral chi-squared distribution]]. If <math>Y</math> is a vector of <math>k</math> [[i.i.d.]] standard normal random variables and <math>A</math> is a <math>k\times k</math> [[symmetric matrix|symmetric]], [[idempotent matrix]] with [[rank (linear algebra)|rank]] <math>k-n</math>, then the [[quadratic form]] <math>Y^TAY</math> is chi-square distributed with <math>k-n</math> degrees of freedom. If <math>\Sigma</math> is a <math>p\times p</math> positive-semidefinite covariance matrix with strictly positive diagonal entries, then for <math>X\sim N(0,\Sigma)</math> and <math>w</math> a random <math>p</math>-vector independent of <math>X</math> such that <math>w_1+\cdots+w_p=1</math> and <math>w_i\geq 0, i=1,\ldots,p,</math> then : <math>\frac{1}{\left(\frac{w_1}{X_1},\ldots,\frac{w_p}{X_p}\right)\Sigma\left(\frac{w_1}{X_1},\ldots,\frac{w_p}{X_p}\right)^\top} \sim \chi_1^2.</math><ref name="Pillai-2016" /> The chi-squared distribution is also naturally related to other distributions arising from the Gaussian. In particular, * <math>Y</math> is [[F-distribution|F-distributed]], <math>Y \sim F(k_1, k_2)</math> if <math>Y = \frac{ {X_1}/{k_1} }{ {X_2}/{k_2} }</math>, where <math>X_1 \sim \chi^2_{k_1}</math> and <math>X_2 \sim \chi^2_{k_2}</math> are statistically independent. * If <math>X_1 \sim \chi^2_{k_1}</math> and <math>X_2 \sim \chi^2_{k_2}</math> are statistically independent, then <math>X_1 + X_2\sim \chi^2_{k_1+k_2}</math>. If <math>X_1</math> and <math>X_2</math> are not independent, then <math>X_1+X_2</math> is not chi-square distributed. === Generalizations === The chi-squared distribution is obtained as the sum of the squares of {{mvar|k}} independent, zero-mean, unit-variance Gaussian random variables. Generalizations of this distribution can be obtained by summing the squares of other types of Gaussian random variables. Several such distributions are described below. === Linear combination === If <math>X_1,\ldots,X_n</math> are chi square random variables and <math>a_1,\ldots,a_n\in\mathbb{R}_{>0}</math>, then the distribution of <math>X=\sum_{i=1}^n a_i X_i</math> is a special case of a [[Generalized chi-squared distribution|Generalized Chi-squared Distribution]]. A closed expression for this distribution is not known. It may be, however, approximated efficiently using the [[Characteristic function (probability theory)#Properties|property of characteristic functions]] of chi-square random variables.<ref>{{cite journal |first=J. |last=Bausch |title=On the Efficient Calculation of a Linear Combination of Chi-Square Random Variables with an Application in Counting String Vacua |journal=J. Phys. A: Math. Theor. |volume=46 |issue=50 |year=2013 |pages=505202 |doi=10.1088/1751-8113/46/50/505202 |bibcode=2013JPhA...46X5202B |arxiv=1208.2691 |s2cid=119721108 }}</ref> === Chi-squared distributions === ==== Noncentral chi-squared distribution ==== {{Main|Noncentral chi-squared distribution}} The noncentral chi-squared distribution is obtained from the sum of the squares of independent Gaussian random variables having unit variance and ''nonzero'' means. ==== Generalized chi-squared distribution ==== {{Main|Generalized chi-squared distribution}} The generalized chi-squared distribution is obtained from the quadratic form {{math|z'Az}} where {{mvar|z}} is a zero-mean Gaussian vector having an arbitrary covariance matrix, and {{mvar|A}} is an arbitrary matrix. === Gamma, exponential, and related distributions === The chi-squared distribution <math>X \sim \chi_k^2</math> is a special case of the [[gamma distribution]], in that <math>X \sim \Gamma \left(\frac{k}2,\frac{1}2\right)</math> using the rate parameterization of the gamma distribution (or <math>X \sim \Gamma \left(\frac{k}2,2 \right)</math> using the scale parameterization of the gamma distribution) where {{mvar|k}} is an integer. Because the [[exponential distribution]] is also a special case of the gamma distribution, we also have that if <math>X \sim \chi_2^2</math>, then <math>X\sim \operatorname{exp}\left(\frac 1 2\right)</math> is an [[exponential distribution]]. The [[Erlang distribution]] is also a special case of the gamma distribution and thus we also have that if <math>X \sim\chi_k^2</math> with even <math>k</math>, then <math>X</math> is Erlang distributed with shape parameter <math>k/2</math> and scale parameter <math>1/2</math>. == Occurrence and applications{{anchor|Applications}} == The chi-squared distribution has numerous applications in inferential [[statistics]], for instance in [[chi-squared test]]s and in estimating [[variance]]s. It enters the problem of estimating the mean of a normally distributed population and the problem of estimating the slope of a [[linear regression|regression]] line via its role in [[Student's t-distribution]]. It enters all [[analysis of variance]] problems via its role in the [[F-distribution]], which is the distribution of the ratio of two independent chi-squared [[random variable]]s, each divided by their respective degrees of freedom. Following are some of the most common situations in which the chi-squared distribution arises from a Gaussian-distributed sample. * if <math>X_1, ..., X_n</math> are [[i.i.d.]] <math>N(\mu, \sigma^2)</math> [[random variable]]s, then <math>\sum_{i=1}^n(X_i - \overline{X})^2 \sim \sigma^2 \chi^2_{n-1}</math> where <math>\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i</math>. * The box below shows some [[statistics]] based on <math>X_i \sim N(\mu_i, \sigma^2_i), i= 1, \ldots, k</math> independent random variables that have probability distributions related to the chi-squared distribution: {| class="wikitable" style="margin:1em auto;" align="center" |- ! Name !! Statistic |- | chi-squared distribution || <math>\sum_{i=1}^k \left(\frac{X_i-\mu_i}{\sigma_i}\right)^2</math> |- | [[noncentral chi-squared distribution]] || <math>\sum_{i=1}^k \left(\frac{X_i}{\sigma_i}\right)^2</math> |- | [[chi distribution]] || <math>\sqrt{\sum_{i=1}^k \left(\frac{X_i-\mu_i}{\sigma_i}\right)^2}</math> |- | [[noncentral chi distribution]] || <math>\sqrt{\sum_{i=1}^k \left(\frac{X_i}{\sigma_i}\right)^2}</math> |} The chi-squared distribution is also often encountered in [[magnetic resonance imaging]].<ref>den Dekker A. J., Sijbers J., (2014) "Data distributions in magnetic resonance images: a review", ''Physica Medica'', [https://dx.doi.org/10.1016/j.ejmp.2014.05.002]</ref> == Computational methods == === Table of {{math|''χ''<sup>2</sup>}} values vs {{math|''p''}}-values === The [[p-value|<math display="inline">p</math>-value]] is the probability of observing a test statistic ''at least'' as extreme in a chi-squared distribution. Accordingly, since the [[cumulative distribution function]] (CDF) for the appropriate degrees of freedom ''(df)'' gives the probability of having obtained a value ''less extreme'' than this point, subtracting the CDF value from 1 gives the ''p''-value. A low ''p''-value, below the chosen significance level, indicates [[statistical significance]], i.e., sufficient evidence to reject the null hypothesis. A significance level of 0.05 is often used as the cutoff between significant and non-significant results. The table below gives a number of ''p''-values matching to <math> \chi^2 </math> for the first 10 degrees of freedom. {| class="wikitable" ! Degrees of freedom (df) !colspan=11| <math> \chi^2 </math> value<ref>[http://www2.lv.psu.edu/jxm57/irp/chisquar.html Chi-Squared Test] {{Webarchive|url=https://web.archive.org/web/20131118011437/http://www2.lv.psu.edu/jxm57/irp/chisquar.html |date=2013-11-18 }} Table B.2. Dr. Jacqueline S. McLaughlin at The Pennsylvania State University. In turn citing: R. A. Fisher and F. Yates, Statistical Tables for Biological Agricultural and Medical Research, 6th ed., Table IV. Two values have been corrected, 7.82 with 7.81 and 4.60 with 4.61</ref> |- | style="text-align:center;" | 1 | 0.004 | 0.02 | 0.06 | 0.15 | 0.46 | 1.07 | 1.64 | 2.71 | 3.84 | 6.63 | 10.83 |- | style="text-align:center;" | 2 | 0.10 | 0.21 | 0.45 | 0.71 | 1.39 | 2.41 | 3.22 | 4.61 | 5.99 | 9.21 | 13.82 |- | style="text-align:center;" | 3 | 0.35 | 0.58 | 1.01 | 1.42 | 2.37 | 3.66 | 4.64 | 6.25 | 7.81 | 11.34 | 16.27 |- | style="text-align:center;" | 4 | 0.71 | 1.06 | 1.65 | 2.20 | 3.36 | 4.88 | 5.99 | 7.78 | 9.49 | 13.28 | 18.47 |- | style="text-align:center;" | 5 | 1.14 | 1.61 | 2.34 | 3.00 | 4.35 | 6.06 | 7.29 | 9.24 | 11.07 | 15.09 | 20.52 |- | style="text-align:center;" | 6 | 1.63 | 2.20 | 3.07 | 3.83 | 5.35 | 7.23 | 8.56 | 10.64 | 12.59 | 16.81 | 22.46 |- | style="text-align:center;" | 7 | 2.17 | 2.83 | 3.82 | 4.67 | 6.35 | 8.38 | 9.80 | 12.02 | 14.07 | 18.48 | 24.32 |- | style="text-align:center;" | 8 | 2.73 | 3.49 | 4.59 | 5.53 | 7.34 | 9.52 | 11.03 | 13.36 | 15.51 | 20.09 | 26.12 |- | style="text-align:center;" | 9 | 3.32 | 4.17 | 5.38 | 6.39 | 8.34 | 10.66 | 12.24 | 14.68 | 16.92 | 21.67 | 27.88 |- | style="text-align:center;" | 10 | 3.94 | 4.87 | 6.18 | 7.27 | 9.34 | 11.78 | 13.44 | 15.99 | 18.31 | 23.21 | 29.59 13.25 |- ! scope="row" style="text-align:right;" | ''p''-value (probability) | style="background: #ffa2aa" | 0.95 | style="background: #efaaaa" | 0.90 | style="background: #e8b2aa" | 0.80 | style="background: #dfbaaa" | 0.70 | style="background: #d8c2aa" | 0.50 | style="background: #cfcaaa" | 0.30 | style="background: #c8d2aa" | 0.20 | style="background: #bfdaaa" | 0.10 | style="background: #b8e2aa" | 0.05 | style="background: #afeaaa" | 0.01 | style="background: #a8faaa" | 0.001 |} These values can be calculated evaluating the [[quantile function]] (also known as "inverse CDF" or "ICDF") of the chi-squared distribution;<ref>{{Cite web|url=https://www.r-tutor.com/elementary-statistics/probability-distributions/chi-squared-distribution|title=Chi-squared Distribution | R Tutorial|website=www.r-tutor.com}}</ref> e. g., the {{math|χ<sup>2</sup>}} ICDF for {{math|1=''p'' = 0.05}} and {{math|1=df = 7}} yields {{math|2.1673 ≈ 2.17}} as in the table above, noticing that {{math|1 – ''p''}} is the [[p-value|''p''-value]] from the table. == History == This distribution was first described by the German geodesist and statistician [[Friedrich Robert Helmert]] in papers of 1875–6,{{sfn|Hald|1998|pp=633–692|loc=27. Sampling Distributions under Normality}}<ref>[[F. R. Helmert]], "[http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN599415665_0021&DMDID=DMDLOG_0018 Ueber die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler und über einige damit im Zusammenhange stehende Fragen]", ''Zeitschrift für Mathematik und Physik'' [http://gdz.sub.uni-goettingen.de/dms/load/toc/?PPN=PPN599415665_0021 21], 1876, pp. 192–219</ref> where he computed the sampling distribution of the sample variance of a normal population. Thus in German this was traditionally known as the ''Helmert'sche'' ("Helmertian") or "Helmert distribution". The distribution was independently rediscovered by the English mathematician [[Karl Pearson]] in the context of [[goodness of fit]], for which he developed his [[Pearson's chi-squared test]], published in 1900, with computed table of values published in {{Harv|Elderton|1902}}, collected in {{Harv|Pearson|1914|pp=xxxi–xxxiii, 26–28|loc=Table XII}}. The name "chi-square" ultimately derives from Pearson's shorthand for the exponent in a [[multivariate normal distribution]] with the Greek letter [[Chi (letter)|Chi]], writing {{mvar|−½χ<sup>2</sup>}} for what would appear in modern notation as {{math|−½'''x'''<sup>T</sup>Σ<sup>−1</sup>'''x'''}} (Σ being the [[covariance matrix]]).<ref>R. L. Plackett, ''Karl Pearson and the Chi-Squared Test'', International Statistical Review, 1983, [https://www.jstor.org/stable/1402731?seq=3 61f.] See also Jeff Miller, [http://jeff560.tripod.com/c.html Earliest Known Uses of Some of the Words of Mathematics].</ref> The idea of a family of "chi-squared distributions", however, is not due to Pearson but arose as a further development due to Fisher in the 1920s.{{sfn|Hald|1998|pp=633–692|loc=27. Sampling Distributions under Normality}} == See also == {{Portal|Mathematics}} {{Colbegin}} * [[Chi distribution]] * [[Scaled inverse chi-squared distribution]] * [[Gamma distribution]] * [[Generalized chi-squared distribution]] * [[Noncentral chi-squared distribution]] * [[Pearson's chi-squared test]] * [[Reduced chi-squared statistic]] * [[Wilks's lambda distribution]] * [[Modified half-normal distribution]]<ref name="Sun-2021">{{cite journal |last1=Sun |first1=Jingchao |last2=Kong |first2=Maiying |last3=Pal |first3=Subhadip |title=The Modified-Half-Normal distribution: Properties and an efficient sampling scheme |journal=Communications in Statistics - Theory and Methods |date=22 June 2021 |volume=52 |issue=5 |pages=1591–1613 |doi=10.1080/03610926.2021.1934700 |s2cid=237919587 |url=https://figshare.com/articles/journal_contribution/The_Modified-Half-Normal_distribution_Properties_and_an_efficient_sampling_scheme/14825266/1/files/28535884.pdf |issn=0361-0926}}</ref> with the pdf on <math>(0, \infty)</math> is given as <math> f(x)= \frac{2\beta^{\alpha/2} x^{\alpha-1} \exp(-\beta x^2+ \gamma x )}{\Psi{\left(\frac{\alpha}{2}, \frac{ \gamma}{\sqrt{\beta}}\right)}}</math>, where <math>\Psi(\alpha,z)={}_1\Psi_1\left(\begin{matrix}\left(\alpha,\frac{1}{2}\right)\\(1,0)\end{matrix};z \right)</math> denotes the [[Fox–Wright Psi function]]. {{Colend}} == References == {{Reflist|30em}} ==Sources== * {{cite book |title=A history of mathematical statistics from 1750 to 1930 |last=Hald |first=Anders |author-link=Anders Hald |year=1998 |publisher=Wiley |location=New York |isbn=978-0-471-17912-2 }} * {{Cite journal |last=Elderton |first=William Palin |author-link=William Palin Elderton |title=Tables for Testing the Goodness of Fit of Theory to Observation |doi=10.1093/biomet/1.2.155 |journal=Biometrika |volume=1 |issue=2 |pages=155–163 |year=1902 |url=https://zenodo.org/record/1431595}} * {{cite journal |last=Pearson |first=Karl |title=On the probability that two independent distributions of frequency are really samples of the same population, with special reference to recent work on the identity of Trypanosome strains |date=1914 |journal=Biometrika |volume=10 |pages=85–154 |doi=10.1093/biomet/10.1.85}} == Further reading == {{refbegin}} * {{cite book |title=An Expert's Chi-Square Testing Guide (Probability and Statistics) |last=Clay |first=Henry |author-link=Henry Clay |year=1852 |publisher=Ashland |location=Washington, D.C. |isbn=978-0-060173-22-7}} * {{springer|title=Chi-squared distribution|id=Chi-squared_distribution}} {{refend}} == External links == * [https://jeff560.tripod.com/c.html Earliest Uses of Some of the Words of Mathematics: entry on Chi squared has a brief history] * [http://www.stat.yale.edu/Courses/1997-98/101/chigf.htm Course notes on Chi-Squared Goodness of Fit Testing] from Yale University Stats 101 class. * [https://demonstrations.wolfram.com/StatisticsAssociatedWithNormalSamples/ ''Mathematica'' demonstration showing the chi-squared sampling distribution of various statistics, e. g. Σ''x''², for a normal population] * [https://www.jstor.org/stable/2348373 Simple algorithm for approximating cdf and inverse cdf for the chi-squared distribution with a pocket calculator] * [https://www.medcalc.org/manual/chi-square-table.php Values of the Chi-squared distribution] {{ProbDistributions|continuous-semi-infinite}} {{Authority control}} [[Category:Normal distribution]] [[Category:Infinitely divisible probability distributions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Abramowitz Stegun ref
(
edit
)
Template:Anchor
(
edit
)
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Cn
(
edit
)
Template:Colbegin
(
edit
)
Template:Colend
(
edit
)
Template:Font color
(
edit
)
Template:Harv
(
edit
)
Template:Hidden begin
(
edit
)
Template:Hidden end
(
edit
)
Template:ISBN
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:More citations needed section
(
edit
)
Template:Mvar
(
edit
)
Template:Portal
(
edit
)
Template:ProbDistributions
(
edit
)
Template:Probability distribution
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Webarchive
(
edit
)