Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Clausen function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Transcendental single-variable function}} {{redir-multi|2|Log sine function|Log cosine function|the historically used compound functions|logarithmic sine|and|logarithmic cosine}} [[File:Mplwp Clausen.svg|thumbnail|Graph of the Clausen function {{math|Cl{{sub|2}}(''θ'')}}]] In [[mathematics]], the '''Clausen function''', introduced by {{harvs|txt|first=Thomas|last=Clausen|authorlink=Thomas Clausen (mathematician)|year=1832}}, is a [[Transcendental number|transcendental]], special [[Function (mathematics)|function]] of a single variable. It can variously be expressed in the form of a [[definite integral]], a [[trigonometric series]], and various other forms. It is intimately connected with the [[polylogarithm]], [[inverse tangent integral]], [[polygamma function]], [[Riemann zeta function]], [[Dirichlet eta function]], and [[Dirichlet beta function]]. The '''Clausen function of order 2''' – often referred to as ''the'' Clausen function, despite being but one of a class of many – is given by the integral: :<math>\operatorname{Cl}_2(\varphi)=-\int_0^\varphi \log\left|2\sin\frac{x}{2} \right|\, dx:</math> In the range <math>0 < \varphi < 2\pi\, </math> the [[sine function]] inside the [[absolute value]] sign remains strictly positive, so the absolute value signs may be omitted. The Clausen function also has the [[Fourier series]] representation: :<math>\operatorname{Cl}_2(\varphi)=\sum_{k=1}^\infty \frac{\sin k\varphi}{k^2} = \sin\varphi +\frac{\sin 2\varphi}{2^2}+\frac{\sin 3\varphi}{3^2}+\frac{\sin 4\varphi}{4^2}+ \cdots </math> The Clausen functions, as a class of functions, feature extensively in many areas of modern mathematical research, particularly in relation to the evaluation of many classes of [[logarithm]]ic and polylogarithmic integrals, both definite and indefinite. They also have numerous applications with regard to the summation of [[hypergeometric series]], summations involving the inverse of the [[central binomial coefficient]], sums of the [[polygamma function]], and [[Dirichlet L-series]]. ==Basic properties== The '''Clausen function''' (of order 2) has simple zeros at all (integer) multiples of <math>\pi, \,</math> since if <math>k\in \mathbb{Z} \, </math> is an integer, then <math>\sin k\pi=0</math> :<math>\operatorname{Cl}_2(m\pi) =0, \quad m= 0,\, \pm 1,\, \pm 2,\, \pm 3,\, \cdots </math> It has maxima at <math>\theta = \frac{\pi}{3}+2m\pi \quad[m\in\mathbb{Z}]</math> :<math>\operatorname{Cl}_2\left(\frac{\pi}{3}+2m\pi \right) =1.01494160 \ldots </math> and minima at <math>\theta = -\frac{\pi}{3}+2m\pi \quad[m\in\mathbb{Z}]</math> :<math>\operatorname{Cl}_2\left(-\frac{\pi}{3}+2m\pi \right) =-1.01494160 \ldots </math> The following properties are immediate consequences of the series definition: :<math>\operatorname{Cl}_2(\theta+2m\pi) = \operatorname{Cl}_2(\theta) </math> :<math>\operatorname{Cl}_2(-\theta) = -\operatorname{Cl}_2(\theta) </math> See {{harvtxt|Lu|Perez|1992}}. ==General definition== {{multiple image | width1 = 220 | header = | image1 = Mplwp Standard Clausen.svg | alt1 = Standard Clausen functions | caption1 = Standard Clausen functions | width2 = 220 | image2 = Mplwp Glaisher-Clausen.svg | alt2 = Glaisher-Clausen functions | caption2 = Glaisher–Clausen functions }} More generally, one defines the two generalized Clausen functions: :<math>\operatorname{S}_z(\theta) = \sum_{k=1}^\infty \frac{\sin k\theta}{k^z}</math> :<math>\operatorname{C}_z(\theta) = \sum_{k=1}^\infty \frac{\cos k\theta}{k^z}</math> which are valid for complex ''z'' with Re ''z'' >1. The definition may be extended to all of the complex plane through [[analytic continuation]]. When ''z'' is replaced with a non-negative integer, the '''standard Clausen functions''' are defined by the following [[Fourier series]]: :<math>\operatorname{Cl}_{2m+2}(\theta) = \sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+2}}</math> :<math>\operatorname{Cl}_{2m+1}(\theta) = \sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+1}}</math> :<math>\operatorname{Sl}_{2m+2}(\theta) = \sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+2}}</math> :<math>\operatorname{Sl}_{2m+1}(\theta) = \sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+1}}</math> N.B. The '''SL-type Clausen functions''' have the alternative notation <math>\operatorname{Gl}_m(\theta)\, </math> and are sometimes referred to as the '''Glaisher–Clausen functions''' (after [[James Whitbread Lee Glaisher]], hence the GL-notation). ==Relation to the Bernoulli polynomials== The '''SL-type Clausen function''' are polynomials in <math>\, \theta\, </math>, and are closely related to the [[Bernoulli polynomials]]. This connection is apparent from the [[Fourier series]] representations of the Bernoulli polynomials: :<math>B_{2n-1}(x)=\frac{2(-1)^n(2n-1)!}{(2\pi)^{2n-1}} \, \sum_{k=1}^\infty \frac{\sin 2\pi kx}{k^{2n-1}}.</math> :<math>B_{2n}(x)=\frac{2(-1)^{n-1}(2n)!}{(2\pi)^{2n}} \, \sum_{k=1}^\infty \frac{\cos 2\pi kx}{k^{2n}}.</math> Setting <math>\, x= \theta/2\pi \, </math> in the above, and then rearranging the terms gives the following closed form (polynomial) expressions: :<math>\operatorname{Sl}_{2m}(\theta) = \frac{(-1)^{m-1}(2\pi)^{2m}}{2(2m)!} B_{2m}\left(\frac{\theta}{2\pi}\right),</math> :<math>\operatorname{Sl}_{2m-1}(\theta) = \frac{(-1)^{m}(2\pi)^{2m-1}}{2(2m-1)!} B_{2m-1}\left(\frac{\theta}{2\pi}\right), </math> where the [[Bernoulli polynomials]] <math>\, B_n(x)\,</math> are defined in terms of the [[Bernoulli numbers]] <math>\, B_n \equiv B_n(0)\, </math> by the relation: :<math>B_n(x)=\sum_{j=0}^n\binom{n}{j} B_jx^{n-j}.</math> Explicit evaluations derived from the above include: :<math> \operatorname{Sl}_1(\theta)= \frac{\pi}{2}-\frac \theta 2, </math> :<math> \operatorname{Sl}_2(\theta)= \frac{\pi^2}{6}-\frac{\pi\theta} 2 +\frac{\theta^2}{4}, </math> :<math> \operatorname{Sl}_3(\theta)= \frac{\pi^2\theta}{6} -\frac{\pi\theta^2}{4}+\frac{\theta^3}{12}, </math> :<math> \operatorname{Sl}_4(\theta)= \frac{\pi^4}{90}-\frac{\pi^2\theta^2}{12}+\frac{\pi\theta^3}{12}-\frac{\theta^4}{48}. </math> ==Duplication formula== For <math> 0 < \theta < \pi </math>, the duplication formula can be proven directly from the integral definition (see also {{harvtxt|Lu|Perez|1992}} for the result – although no proof is given): :<math>\operatorname{Cl}_2(2\theta) = 2\operatorname{Cl}_2(\theta) - 2\operatorname{Cl}_2(\pi-\theta) </math> Denoting [[Catalan's constant]] by <math>K=\operatorname{Cl}_2\left(\frac{\pi}{2}\right)</math>, immediate consequences of the duplication formula include the relations: :<math>\operatorname{Cl}_2\left(\frac{\pi}{4}\right)- \operatorname{Cl}_2 \left(\frac{3\pi} 4\right)=\frac K 2</math> :<math>2\operatorname{Cl}_2\left(\frac{\pi}{3}\right)= 3\operatorname{Cl}_2 \left(\frac{2\pi} 3\right)</math> For higher order Clausen functions, duplication formulae can be obtained from the one given above; simply replace <math> \, \theta \, </math> with the [[Bound variable|dummy variable]] <math>x</math>, and integrate over the interval <math> \, [0, \theta]. \, </math> Applying the same process repeatedly yields: :<math>\operatorname{Cl}_3(2\theta) = 4\operatorname{Cl}_3(\theta) + 4\operatorname{Cl}_3(\pi-\theta) </math> :<math>\operatorname{Cl}_4(2\theta) = 8\operatorname{Cl}_4(\theta) - 8\operatorname{Cl}_4(\pi-\theta) </math> :<math>\operatorname{Cl}_5(2\theta) = 16\operatorname{Cl}_5(\theta) + 16 \operatorname{Cl}_5(\pi-\theta) </math> :<math>\operatorname{Cl}_6(2\theta) = 32\operatorname{Cl}_6(\theta) - 32 \operatorname{Cl}_6(\pi-\theta) </math> And more generally, upon induction on <math>\, m, \; m \ge 1 </math> :<math>\operatorname{Cl}_{m+1}(2\theta) = 2^m\left[\operatorname{Cl}_{m+1}(\theta) + (-1)^m \operatorname{Cl}_{m+1}(\pi-\theta) \right]</math> Use of the generalized duplication formula allows for an extension of the result for the Clausen function of order 2, involving [[Catalan's constant]]. For <math>\, m \in \mathbb{Z} \ge 1\, </math> :<math>\operatorname{Cl}_{2m}\left(\frac \pi 2 \right) = 2^{2m-1} \left[\operatorname{Cl}_{2m}\left(\frac{\pi}{4}\right)- \operatorname{Cl}_{2m}\left(\frac{3\pi}{4}\right) \right] = \beta(2m)</math> Where <math>\, \beta(x) \, </math> is the [[Dirichlet beta function]]. ===Proof of the duplication formula=== From the integral definition, :<math>\operatorname{Cl}_2(2\theta)=-\int_0^{2\theta} \log\left| 2 \sin \frac{x}{2} \right| \,dx</math> Apply the duplication formula for the [[sine function]], <math>\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}</math> to obtain :<math> \begin{align} & -\int_0^{2\theta} \log\left| \left(2 \sin \frac{x}{4} \right)\left(2 \cos \frac{x}{4} \right) \right| \,dx \\ = {} & -\int_0^{2\theta} \log\left| 2 \sin \frac{x}{4} \right| \,dx -\int_0^{2\theta} \log\left| 2 \cos \frac{x}{4} \right| \,dx \end{align} </math> Apply the substitution <math>x=2y, dx=2\, dy</math> on both integrals: :<math> \begin{align} & -2\int_0^\theta \log\left| 2 \sin \frac{x}{2} \right| \,dx -2\int_0^\theta \log\left| 2 \cos \frac{x}{2} \right| \,dx \\ = {} & 2\, \operatorname{Cl}_2(\theta) -2\int_0^\theta \log\left| 2 \cos \frac{x}{2} \right| \,dx \end{align} </math> On that last integral, set <math>y=\pi-x, \, x= \pi-y, \, dx = -dy</math>, and use the trigonometric identity <math>\cos(x-y)=\cos x\cos y - \sin x\sin y</math> to show that: : <math> \begin{align} & \cos\left(\frac{\pi-y}{2}\right) = \sin \frac{y}{2} \\ \Longrightarrow \qquad & \operatorname{Cl}_2(2\theta)=2\, \operatorname{Cl}_2(\theta) -2\int_0^\theta \log\left| 2 \cos \frac{x}{2} \right| \,dx \\ = {} & 2\, \operatorname{Cl}_2(\theta) +2\int_{\pi}^{\pi-\theta} \log\left| 2 \sin \frac{y}{2} \right| \,dy \\ = {} & 2\, \operatorname{Cl}_2(\theta) -2\, \operatorname{Cl}_2(\pi-\theta) + 2\, \operatorname{Cl}_2(\pi) \end{align} </math> : <math>\operatorname{Cl}_2(\pi) = 0 \, </math> Therefore, : <math>\operatorname{Cl}_2(2\theta)=2\, \operatorname{Cl}_2(\theta)-2\, \operatorname{Cl}_2(\pi-\theta)\, . \, \Box </math> ==Derivatives of general-order Clausen functions== Direct differentiation of the [[Fourier series]] expansions for the Clausen functions give: :<math>\frac{d}{d\theta}\operatorname{Cl}_{2m+2}(\theta) = \frac{d}{d\theta}\sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+2}}=\sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+1}}=\operatorname{Cl}_{2m+1}(\theta)</math> :<math>\frac{d}{d\theta}\operatorname{Cl}_{2m+1}(\theta) = \frac{d}{d\theta}\sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+1}}=-\sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m}}=-\operatorname{Cl}_{2m}(\theta)</math> :<math>\frac{d}{d\theta}\operatorname{Sl}_{2m+2}(\theta) = \frac{d}{d\theta}\sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+2}}= -\sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+1}}=-\operatorname{Sl}_{2m+1} (\theta)</math> :<math>\frac{d}{d\theta}\operatorname{Sl}_{2m+1}(\theta) = \frac{d}{d\theta}\sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+1}}=\sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m}}=\operatorname{Sl}_{2m} (\theta)</math> By appealing to the [[First Fundamental Theorem Of Calculus]], we also have: :<math>\frac{d}{d\theta}\operatorname{Cl}_2(\theta) = \frac{d}{d\theta} \left[ -\int_0^\theta \log \left| 2\sin \frac{x}{2}\right| \,dx \, \right] = - \log \left| 2\sin \frac{\theta}{2}\right| = \operatorname{Cl}_1(\theta) </math> ==Relation to the inverse tangent integral== The [[inverse tangent integral]] is defined on the interval <math>0 < z < 1</math> by :<math>\operatorname{Ti}_2(z)=\int_0^z \frac{\tan^{-1}x}{x}\,dx = \sum_{k=0}^\infty (-1)^k \frac{z^{2k+1}}{(2k+1)^2}</math> It has the following closed form in terms of the Clausen function: :<math>\operatorname{Ti}_2(\tan \theta)= \theta\log(\tan \theta) + \frac{1}{2} \operatorname{Cl}_2(2\theta) +\frac{1}{2}\operatorname{Cl}_2(\pi-2\theta)</math> ===Proof of the inverse tangent integral relation=== From the integral definition of the [[inverse tangent integral]], we have :<math>\operatorname{Ti}_2(\tan \theta) = \int_0^{\tan \theta}\frac{\tan^{-1}x}{x}\,dx</math> Performing an integration by parts :<math>\int_0^{\tan \theta} \frac{\tan^{-1}x}{x}\,dx= \tan^{-1}x\log x \, \Bigg|_0^{\tan \theta} - \int_0^{\tan \theta} \frac{\log x}{1+x^2}\,dx=</math> :<math>\theta \log \tan \theta - \int_0^{\tan \theta}\frac{\log x}{1+x^2}\,dx</math> Apply the substitution <math>x=\tan y,\, y=\tan^{-1}x,\, dy=\frac{dx}{1+x^2}\,</math> to obtain :<math>\theta \log \tan \theta - \int_0^\theta \log(\tan y)\,dy</math> For that last integral, apply the transform :<math>y=x/2,\, dy=dx/2\,</math> to get :<math> \begin{align} & \theta \log \tan \theta - \frac 1 2 \int_0^{2\theta}\log\left(\tan \frac x 2 \right)\,dx \\[6pt] = {} & \theta \log \tan \theta - \frac{1}{2}\int_0^{2\theta}\log\left(\frac{\sin (x/2) }{\cos (x/2)}\right)\,dx \\[6pt] = {} & \theta \log \tan \theta - \frac{1}{2}\int_0^{2\theta}\log\left(\frac{2\sin (x/2) }{2\cos (x/2)}\right)\,dx \\[6pt] = {} & \theta \log \tan \theta - \frac{1}{2}\int_0^{2\theta}\log\left(2\sin \frac{x}{2} \right)\,dx+ \frac{1}{2}\int_0^{2\theta}\log\left(2\cos \frac{x}{2}\right)\,dx \\[6pt] = {} & \theta \log \tan \theta +\frac{1}{2}\operatorname{Cl}_2(2\theta)+ \frac{1}{2} \int_0^{2\theta} \log\left(2\cos \frac{x}{2}\right)\,dx. \end{align} </math> Finally, as with the proof of the Duplication formula, the substitution <math>x=(\pi-y)\, </math> reduces that last integral to :<math>\int_0^{2\theta}\log\left(2\cos \frac{x}{2}\right)\,dx= \operatorname{Cl}_2(\pi-2\theta) - \operatorname{Cl}_2(\pi) = \operatorname{Cl}_2(\pi-2\theta)</math> Thus :<math>\operatorname{Ti}_2(\tan \theta) = \theta \log \tan \theta +\frac{1}{2}\operatorname{Cl}_2(2\theta)+ \frac{1}{2} \operatorname{Cl}_2(\pi-2\theta)\, . \, \Box </math> ==Relation to the Barnes' G-function== For real <math>0 < z < 1</math>, the Clausen function of second order can be expressed in terms of the [[Barnes G-function]] and (Euler) [[Gamma function]]: :<math>\operatorname{Cl}_{2}(2\pi z) = 2\pi \log \left( \frac{G(1-z)}{G(1+z)} \right) +2\pi z \log \left( \frac{\pi}{ \sin \pi z } \right) </math> Or equivalently :<math>\operatorname{Cl}_{2}(2\pi z) = 2\pi \log \left( \frac{G(1-z)}{G(z)} \right) -2\pi \log \Gamma(z)+2\pi z \log \left( \frac{\pi}{ \sin \pi z } \right) </math> See {{harvtxt|Adamchik|2003}}. ==Relation to the polylogarithm== The Clausen functions represent the real and imaginary parts of the polylogarithm, on the [[unit circle]]: :<math>\operatorname{Cl}_{2m}(\theta) = \Im (\operatorname{Li}_{2m}(e^{i \theta})), \quad m\in\mathbb{Z} \ge 1</math> :<math>\operatorname{Cl}_{2m+1}(\theta) = \Re (\operatorname{Li}_{2m+1}(e^{i \theta})), \quad m\in\mathbb{Z} \ge 0</math> This is easily seen by appealing to the series definition of the [[polylogarithm]]. :<math>\operatorname{Li}_n(z)=\sum_{k=1}^\infty \frac{z^k}{k^n} \quad \Longrightarrow \operatorname{Li}_n\left(e^{i\theta}\right)=\sum_{k=1}^\infty \frac{\left(e^{i\theta}\right)^k}{k^n}= \sum_{k=1}^\infty \frac{e^{ik\theta}}{k^n}</math> By Euler's theorem, :<math>e^{i\theta} = \cos \theta +i\sin \theta</math> and by de Moivre's Theorem ([[De Moivre's formula]]) :<math>(\cos \theta +i\sin \theta)^k= \cos k\theta +i\sin k\theta \quad \Rightarrow \operatorname{Li}_n\left(e^{i\theta}\right)=\sum_{k=1}^\infty \frac{\cos k\theta}{k^n}+ i \, \sum_{k=1}^\infty \frac{\sin k\theta}{k^n}</math> Hence :<math>\operatorname{Li}_{2m}\left(e^{i\theta}\right)=\sum_{k=1}^\infty \frac{\cos k\theta}{k^{2m}}+ i \, \sum_{k=1}^\infty \frac{\sin k\theta}{k^{2m}} = \operatorname{Sl}_{2m}(\theta)+i\operatorname{Cl}_{2m}(\theta)</math> :<math>\operatorname{Li}_{2m+1}\left(e^{i\theta}\right)=\sum_{k=1}^\infty \frac{\cos k\theta}{k^{2m+1}}+ i \, \sum_{k=1}^\infty \frac{\sin k\theta}{k^{2m+1}} = \operatorname{Cl}_{2m+1}(\theta)+i\operatorname{Sl}_{2m+1}(\theta)</math> ==Relation to the polygamma function== The Clausen functions are intimately connected to the [[polygamma function]]. Indeed, it is possible to express Clausen functions as linear combinations of sine functions and polygamma functions. One such relation is shown here, and proven below: :<math>\operatorname{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \frac{1}{(2p)^{2m}(2m-1)!} \, \sum_{j=1}^{p} \sin\left(\tfrac{qj\pi}{p}\right)\, \left[\psi_{2m-1}\left(\tfrac{j}{2p}\right)+(-1)^q\psi_{2m-1}\left(\tfrac{j+p}{2p}\right)\right]. </math> An immediate corollary is this equivalent formula in terms of the Hurwitz zeta function: :<math>\operatorname{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \frac{1}{(2p)^{2m}} \, \sum_{j=1}^{p} \sin\left(\tfrac{qj\pi}{p}\right)\, \left[\zeta\left(2m,\tfrac{j}{2p}\right)+(-1)^q \zeta\left(2m,\tfrac{j+p}{2p}\right)\right]. </math> {{Collapse top|title=Proof of the formula}} Let <math>\,p\,</math> and <math>\,q\,</math> be positive integers, such that <math>\,q/p\,</math> is a rational number <math>\,0 < q/p < 1\, </math>, then, by the series definition for the higher order Clausen function (of even index): :<math>\operatorname{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \sum_{k=1}^\infty \frac{\sin (kq\pi/p)}{k^{2m}} </math> We split this sum into exactly '''p'''-parts, so that the first series contains all, and only, those terms congruent to <math>\,kp+1,\, </math> the second series contains all terms congruent to <math>\,kp+2,\, </math> etc., up to the final '''p'''-th part, that contain all terms congruent to <math>\,kp+p\, </math> :<math> \begin{align} & \operatorname{Cl}_{2m}\left( \frac{q\pi}{p}\right) \\ = {} & \sum_{k=0}^\infty \frac{\sin \left[(kp+1)\frac{q\pi}{p}\right]}{(kp+1)^{2m}} + \sum_{k=0}^\infty \frac{\sin \left[(kp+2)\frac{q\pi}{p}\right]}{(kp+2)^{2m}} + \sum_{k=0}^\infty \frac{\sin \left[(kp+3)\frac{q\pi}{p}\right]}{(kp+3)^{2m}} + \cdots \\ & \cdots + \sum_{k=0}^\infty \frac{\sin \left[(kp+p-2)\frac{q\pi}{p}\right]}{(kp+p-2)^{2m}} + \sum_{k=0}^\infty \frac{\sin \left[(kp+p-1)\frac{q\pi}{p}\right]}{(kp+p-1)^{2m}} + \sum_{k=0}^\infty \frac{\sin \left[(kp+p)\frac{q\pi}{p}\right]}{(kp+p)^{2m}} \end{align} </math> We can index these sums to form a double sum: :<math> \begin{align} & \operatorname{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \sum_{j=1}^{p} \left\{ \sum_{k=0}^\infty \frac{\sin \left[(kp+j)\frac{q\pi}{p}\right]}{(kp+j)^{2m}} \right\} \\ = {} & \sum_{j=1}^{p} \frac{1}{p^{2m}}\left\{ \sum_{k=0}^\infty \frac{\sin \left[(kp+j)\frac{q\pi}{p}\right]}{(k+(j/p))^{2m}} \right\} \end{align} </math> Applying the addition formula for the [[sine function]], <math>\,\sin(x+y)=\sin x\cos y+\cos x\sin y,\, </math> the sine term in the numerator becomes: :<math>\sin \left[(kp+j)\frac{q\pi}{p}\right]=\sin\left(kq\pi+\frac{qj\pi}{p}\right)=\sin kq\pi \cos \frac{qj\pi}{p}+\cos kq\pi \sin\frac{qj\pi}{p}</math> :<math>\sin m\pi \equiv 0, \quad \, \cos m\pi \equiv (-1)^m \quad \Longleftrightarrow m=0,\, \pm 1,\, \pm 2,\, \pm 3,\, \ldots </math> :<math>\sin \left[(kp+j)\frac{q\pi}{p}\right]=(-1)^{kq}\sin\frac{qj\pi}{p}</math> Consequently, :<math>\operatorname{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \sum_{j=1}^p \frac{1}{p^{2m}} \sin\left(\frac{qj\pi}{p}\right)\, \left\{ \sum_{k=0}^\infty \frac{(-1)^{kq}}{(k+(j/p))^{2m}} \right\} </math> To convert the '''inner sum''' in the double sum into a non-alternating sum, split in two in parts in exactly the same way as the earlier sum was split into '''p'''-parts: :<math> \begin{align} & \sum_{k=0}^\infty \frac{(-1)^{kq}}{(k+(j/p))^{2m}}=\sum_{k=0}^\infty \frac{(-1)^{(2k)q}}{((2k)+(j/p))^{2m}}+ \sum_{k=0}^\infty \frac{(-1)^{(2k+1)q}}{((2k+1)+(j/p))^{2m}} \\ = {} & \sum_{k=0}^\infty \frac{1}{(2k+(j/p))^{2m}}+ (-1)^q\, \sum_{k=0}^\infty \frac{1}{(2k+1+(j/p))^{2m}} \\ = {} & \frac{1}{2^p}\left[ \sum_{k=0}^\infty \frac{1}{(k+(j/2p))^{2m}}+ (-1)^q\, \sum_{k=0}^\infty \frac{1}{(k+\left(\frac{j+p}{2p}\right))^{2m}} \right] \end{align} </math> For <math>\,m \in\mathbb{Z} \ge 1\, </math>, the [[polygamma function]] has the series representation :<math>\psi_m(z)=(-1)^{m+1}m! \sum_{k=0}^\infty \frac{1}{(k+z)^{m+1}} </math> So, in terms of the polygamma function, the previous '''inner sum''' becomes: : <math> \frac{1}{2^{2m}(2m-1)!} \left[\psi_{2m-1}\left(\tfrac{j}{2p}\right)+(-1)^q\psi_{2m-1} \left(\tfrac{j+p}{2p}\right)\right] </math> Plugging this back into the '''double sum''' gives the desired result: :<math>\operatorname{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \frac{1}{(2p)^{2m}(2m-1)!} \, \sum_{j=1}^{p} \sin\left(\tfrac{qj\pi}{p}\right)\, \left[\psi_{2m-1}\left(\tfrac{j}{2p}\right)+(-1)^q\psi_{2m-1}\left(\tfrac{j+p}{2p}\right)\right] </math> {{Collapse bottom}} ==Relation to the generalized logsine integral== The '''generalized logsine''' integral is defined by: :<math>\mathcal{L}s_n^{m}(\theta) = -\int_0^\theta x^m \log^{n-m-1} \left| 2\sin\frac{x}{2} \right| \, dx</math> In this generalized notation, the Clausen function can be expressed in the form: :<math>\operatorname{Cl}_2(\theta) = \mathcal{L}s_2^{0}(\theta) </math> ==Kummer's relation== [[Ernst Kummer]] and Rogers give the relation :<math>\operatorname{Li}_2(e^{i \theta}) = \zeta(2) - \theta(2\pi-\theta)/4 + i\operatorname{Cl}_2(\theta)</math> valid for <math>0\leq \theta \leq 2\pi</math>. ==Relation to the Lobachevsky function== The '''Lobachevsky function''' Λ or Л is essentially the same function with a change of variable: :<math>\Lambda(\theta) = - \int_0^\theta \log|2 \sin(t)| \,dt = \operatorname{Cl}_2(2\theta)/2</math> though the name "Lobachevsky function" is not quite historically accurate, as Lobachevsky's formulas for hyperbolic volume used the slightly different function :<math>\int_0^\theta \log| \sec(t)| \,dt = \Lambda(\theta+\pi/2)+\theta\log 2.</math> ==Relation to Dirichlet L-functions== For rational values of <math>\theta/\pi</math> (that is, for <math>\theta/\pi=p/q</math> for some integers ''p'' and ''q''), the function <math>\sin(n\theta)</math> can be understood to represent a periodic orbit of an element in the [[cyclic group]], and thus <math>\operatorname{Cl}_s(\theta)</math> can be expressed as a simple sum involving the [[Hurwitz zeta function]].{{citation needed|date=July 2013}} This allows relations between certain [[Dirichlet L-function]]s to be easily computed. ==Series acceleration== A [[series acceleration]] for the Clausen function is given by :<math>\frac{\operatorname{Cl}_2(\theta)} \theta = 1-\log|\theta| + \sum_{n=1}^\infty \frac{\zeta(2n)}{n(2n+1)} \left(\frac \theta {2\pi}\right)^{2n} </math> which holds for <math>|\theta|<2\pi</math>. Here, <math>\zeta(s)</math> is the [[Riemann zeta function]]. A more rapidly convergent form is given by :<math>\frac{\operatorname{Cl}_2(\theta)}{\theta} = 3-\log\left[|\theta| \left(1-\frac{\theta^2}{4\pi^2}\right)\right] -\frac{2\pi}{\theta} \log \left( \frac{2\pi+\theta}{2\pi-\theta}\right) +\sum_{n=1}^\infty \frac{\zeta(2n)-1}{n(2n+1)} \left(\frac{\theta}{2\pi}\right)^{2n}. </math> Convergence is aided by the fact that <math>\zeta(n)-1</math> approaches zero rapidly for large values of ''n''. Both forms are obtainable through the types of resummation techniques used to obtain [[rational zeta series]] {{harv|Borwein et al.|2000}}. ==Special values== Recall the [[Barnes G-function]], the [[Catalan constant|Catalan's constant]] ''K'' and the [[Gieseking manifold|Gieseking constant]] ''V''. Some special values include :<math>\operatorname{Cl}_2\left(\frac{\pi}{2}\right)=K</math> :<math>\operatorname{Cl}_2\left(\frac{\pi}{3}\right)=V</math> :<math>\operatorname{Cl}_2\left(\frac{\pi}{3}\right)=3\pi \log\left( \frac{G\left(\frac{2}{3}\right)}{ G\left(\frac{1}{3}\right)} \right)-3\pi \log \Gamma\left(\frac{1}{3}\right)+\pi \log \left(\frac{ 2\pi }{\sqrt{3}}\right)</math> :<math>\operatorname{Cl}_2\left(\frac{2\pi}{3}\right)=2\pi \log\left( \frac{G\left(\frac{2}{3}\right)}{ G\left(\frac{1}{3}\right)} \right)-2\pi \log \Gamma\left(\frac{1}{3}\right) +\frac{2\pi}{3} \log \left(\frac{ 2\pi }{\sqrt{3}}\right)</math> :<math>\operatorname{Cl}_2\left(\frac{\pi}{4}\right)= 2\pi\log \left( \frac{G\left(\frac{7}{8}\right)}{G\left(\frac{1}{8}\right)} \right) -2\pi \log \Gamma\left(\frac{1}{8}\right)+\frac{\pi}{4}\log \left( \frac{2\pi}{\sqrt{2-\sqrt{2}}} \right)</math> :<math>\operatorname{Cl}_2\left(\frac{3\pi}{4}\right)= 2\pi\log \left( \frac{G\left(\frac{5}{8}\right)}{G\left(\frac{3}{8}\right)} \right) -2\pi \log \Gamma\left(\frac{3}{8}\right)+\frac{3\pi}{4}\log \left( \frac{2\pi}{\sqrt{2+\sqrt{2}}} \right)</math> :<math>\operatorname{Cl}_2\left(\frac{\pi}{6}\right)= 2\pi\log \left( \frac{G\left(\frac{11}{12}\right)}{G\left(\frac{1}{12}\right)} \right) -2\pi \log \Gamma\left(\frac{1}{12}\right)+\frac{\pi}{6}\log \left( \frac{2\pi \sqrt{2} }{\sqrt{3}-1} \right)</math> :<math>\operatorname{Cl}_2\left(\frac{5\pi}{6}\right)= 2\pi\log \left( \frac{G\left(\frac{7}{12}\right)}{G\left(\frac{5}{12}\right)} \right) -2\pi \log \Gamma\left(\frac{5}{12}\right)+\frac{5\pi}{6}\log \left( \frac{2\pi \sqrt{2} }{\sqrt{3}+1} \right)</math> In general, from the [[Barnes G-function#Reflection formula 1.0|Barnes G-function reflection formula]], :<math> \operatorname{Cl}_2(2\pi z)=2\pi\log\left( \frac{G(1-z)}{G(z)} \right)-2\pi\log\Gamma(z)+2\pi z\log\left(\frac{\pi}{\sin\pi z}\right) </math> Equivalently, using Euler's [[reflection formula]] for the gamma function, then, :<math> \operatorname{Cl}_2(2\pi z)=2\pi\log\left( \frac{G(1-z)}{G(z)} \right)-2\pi\log\Gamma(z)+2\pi z\log\big(\Gamma(z)\Gamma(1 - z)\big) </math> ==Generalized special values== Some special values for higher order Clausen functions include :<math>\operatorname{Cl}_{2m}(0)=\operatorname{Cl}_{2m}(\pi) = \operatorname{Cl}_{2m}(2\pi)=0</math> :<math>\operatorname{Cl}_{2m}\left(\frac{\pi}{2}\right)=\beta(2m)</math> :<math>\operatorname{Cl}_{2m+1}(0)=\operatorname{Cl}_{2m+1}(2\pi)=\zeta(2m+1)</math> :<math>\operatorname{Cl}_{2m+1}(\pi)=-\eta(2m+1)=-\left(\frac{2^{2m}-1}{2^{2m}}\right) \zeta(2m+1)</math> :<math>\operatorname{Cl}_{2m+1}\left(\frac{\pi}{2}\right)=-\frac{1}{2^{2m+1}}\eta(2m+1)=-\left(\frac{2^{2m}-1}{2^{4m+1}}\right)\zeta(2m+1)</math> where <math>\beta(x)</math> is the [[Dirichlet beta function]], <math>\eta(x)</math> is the [[Dirichlet eta function]] (also called the alternating zeta function), and <math>\zeta(x)</math> is the [[Riemann zeta function]]. ==Integrals of the direct function== The following integrals are easily proven from the series representations of the Clausen function: :<math>\int_0^\theta \operatorname{Cl}_{2m}(x)\,dx=\zeta(2m+1)-\operatorname{Cl}_{2m+1}(\theta)</math> :<math>\int_0^\theta \operatorname{Cl}_{2m+1}(x)\,dx=\operatorname{Cl}_{2m+2}(\theta)</math> :<math>\int_0^\theta \operatorname{Sl}_{2m}(x)\,dx=\operatorname{Sl}_{2m+1}(\theta)</math> :<math>\int_0^\theta \operatorname{Sl}_{2m+1}(x)\,dx=\zeta(2m+2)-\operatorname{Cl}_{2m+2}(\theta)</math> Fourier-analytic methods can be used to find the first moments of the square of the function <math>\operatorname{Cl}_2(x)</math> on the interval <math>[0,\pi]</math>:<ref name='M'>{{cite journal | last1 = István | first1 = Mező | title = Log-sine integrals and alternating Euler sums | journal = [[Acta Mathematica Hungarica]] | year = 2020 | issue = 160 | pages = 45–57 | doi=10.1007/s10474-019-00975-w }}</ref> :<math>\int_0^\pi \operatorname{Cl}_2^2(x)\,dx=\zeta(4),</math> :<math>\int_0^\pi t\operatorname{Cl}_2^2(x)\,dx=\frac{221}{90720} \pi^{6}-4 \zeta(\overline{5}, 1)-2 \zeta(\overline{4}, 2),</math> :<math>\int_0^\pi t^2\operatorname{Cl}_2^2(x)\,dx=-\frac{2}{3} \pi\left[12 \zeta(\overline{5}, 1)+6 \zeta(\overline{4}, 2)-\frac{23}{10080} \pi^{6}\right].</math> Here <math>\zeta</math> denotes the [[multiple zeta function]]. ==Integral evaluations involving the direct function== A large number of trigonometric and logarithmo-trigonometric integrals can be evaluated in terms of the Clausen function, and various common mathematical constants like <math>\, K \,</math> ([[Catalan's constant]]), <math>\, \log 2 \,</math>, and the special cases of the [[zeta function]], <math>\, \zeta(2) \,</math> and <math>\, \zeta(3) \,</math>. The examples listed below follow directly from the integral representation of the Clausen function, and the proofs require little more than basic trigonometry, integration by parts, and occasional term-by-term integration of the [[Fourier series]] definitions of the Clausen functions. :<math>\int_0^\theta \log(\sin x)\,dx=-\tfrac{1}{2}\operatorname{Cl}_2(2\theta)-\theta\log 2</math> :<math>\int_0^\theta \log(\cos x)\,dx=\tfrac{1}{2}\operatorname{Cl}_2(\pi-2\theta)-\theta\log 2</math> :<math>\int_0^\theta \log(\tan x)\,dx=-\tfrac{1}{2}\operatorname{Cl}_2(2\theta)-\tfrac{1}{2} \operatorname{Cl}_2(\pi-2\theta)</math> :<math>\int_0^\theta \log(1+\cos x)\,dx=2\operatorname{Cl}_2(\pi-\theta)-\theta\log 2</math> :<math>\int_0^\theta \log(1-\cos x)\,dx=-2\operatorname{Cl}_2(\theta)-\theta\log 2</math> :<math>\int_0^\theta \log(1+\sin x)\,dx=2K-2\operatorname{Cl}_2\left(\frac{\pi}{2}+\theta\right) -\theta\log 2</math> :<math>\int_0^\theta \log(1-\sin x)\,dx=-2K+2\operatorname{Cl}_2\left(\frac{\pi}{2}-\theta\right)-\theta\log 2</math> ==References== {{Reflist}} * {{AS ref|27.8|1005}} *{{Cite journal | last1=Clausen | first1=Thomas | title=Über die Function sin φ + (1/2<sup>2</sup>) sin 2φ + (1/3<sup>2</sup>) sin 3φ + etc. | url=http://resolver.sub.uni-goettingen.de/purl?PPN243919689_0008 | year=1832 | journal=[[Journal für die reine und angewandte Mathematik]] | issn=0075-4102 | volume=8 | pages=298–300 }} * {{cite journal | first1=Van E. | last1=Wood | title=Efficient calculation of Clausen's integral |journal=Math. Comp. | year=1968 | volume=22 | number=104 | pages=883–884 | mr=0239733 |doi = 10.1090/S0025-5718-1968-0239733-9| doi-access=free }} * [[Leonard Lewin (telecommunications engineer)|Leonard Lewin]], (Ed.). ''Structural Properties of Polylogarithms'' (1991) American Mathematical Society, Providence, RI. {{ISBN|0-8218-4532-2}} * {{cite web| first1=Hung Jung | last1=Lu | first2=Christopher A. | last2=Perez |url=http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-5809.pdf | title=Massless one-loop scalar three-point integral and associated Clausen, Glaisher, and L-functions | year=1992}} * {{cite journal| first1=Kurt Siegfried | last1=Kölbig | title=Chebyshev coefficients for the Clausen function Cl<sub>2</sub>(x) |journal=J. Comput. Appl. Math. |year=1995 |volume=64 | number=3 |pages=295–297 |mr=1365432 |doi=10.1016/0377-0427(95)00150-6|doi-access=free }} * {{cite journal|authorlink1=Jonathan Borwein|first1=Jonathan M.|last1=Borwein|first2=David M.|last2=Bradley|first3=Richard E.|last3=Crandall|title=Computational Strategies for the Riemann Zeta Function|journal=J. Comput. Appl. Math.|year=2000|volume=121|issue=1–2|mr=1780051|pages=247–296|doi=10.1016/s0377-0427(00)00336-8|bibcode=2000JCoAM.121..247B|doi-access=free|ref={{harvid|Borwein et al.|2000}}}} * {{cite arXiv| first1=Viktor. S. | last1=Adamchik | eprint=math/0308086v1 | title=Contributions to the Theory of the Barnes Function |year=2003}} * {{cite journal|first1=Mikahil Yu. | last1=Kalmykov | first2=A. | last2=Sheplyakov |title=LSJK – a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine integral |journal=Comput. Phys. Commun. |year=2005 | volume=172 | issue=1 | pages=45–59 |doi=10.1016/j.cpc.2005.04.013 |arxiv=hep-ph/0411100|bibcode=2005CoPhC.172...45K}} * {{cite journal|first1=Jonathan M. |last1=Borwein | first2=Armin |last2= Straub | doi=10.1016/j.jat.2013.07.003| journal=J. Approx. Theory|pages=74–88 | volume=193| year=2013|title=Relations for Nielsen Polylogarithms}} * {{cite arXiv| first1=R. J. | last1=Mathar | eprint=1309.7504 | title=A C99 implementation of the Clausen sums |year=2013| class=math.NA }} [[Category:Zeta and L-functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:AS ref
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Collapse bottom
(
edit
)
Template:Collapse top
(
edit
)
Template:Harv
(
edit
)
Template:Harvs
(
edit
)
Template:Harvtxt
(
edit
)
Template:ISBN
(
edit
)
Template:Math
(
edit
)
Template:Multiple image
(
edit
)
Template:Redir-multi
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)