Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Complex conjugate of a vector space
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematics concept}} In [[mathematics]], the '''complex conjugate''' of a [[complex numbers|complex]] [[vector space]] <math>V\,</math> is a complex vector space <math>\overline V</math> that has the same elements and additive group structure as <math>V,</math> but whose [[scalar multiplication]] involves [[Complex conjugate|conjugation]] of the scalars. In other words, the scalar multiplication of <math>\overline V</math> satisfies <math display="block">\alpha\,*\, v = {\,\overline{\alpha} \cdot \,v\,}</math> where <math>*</math> is the scalar multiplication of <math>\overline{V}</math> and <math>\cdot</math> is the scalar multiplication of <math>V.</math> The letter <math>v</math> stands for a vector in <math>V,</math> <math>\alpha</math> is a complex number, and <math>\overline{\alpha}</math> denotes the [[complex conjugate]] of <math>\alpha.</math><ref name="Schmüdgen2013">{{cite book|author=K. Schmüdgen|title=Unbounded Operator Algebras and Representation Theory|url=https://books.google.com/books?id=Fx3yBwAAQBAJ&pg=PA16|date=11 November 2013|publisher=Birkhäuser|isbn=978-3-0348-7469-4|page=16}}</ref> More concretely, the complex conjugate vector space is the same underlying {{em|real}} vector space (same set of points, same vector addition and real scalar multiplication) with the conjugate [[linear complex structure]] <math>J</math> (different multiplication by <math>i</math>). ==Motivation== If <math>V</math> and <math>W</math> are complex vector spaces, a function <math>f : V \to W</math> is [[Antilinear map|antilinear]] if <math display="block">f(v + w) = f(v) + f(w) \quad \text{ and } \quad f(\alpha v) = \overline{\alpha} \, f(v)</math> With the use of the conjugate vector space <math>\overline V</math>, an antilinear map <math>f : V \to W</math> can be regarded as an ordinary [[linear map]] of type <math>\overline{V} \to W.</math> The linearity is checked by noting: <math display="block">f(\alpha * v) = f(\overline{\alpha} \cdot v) = \overline{\overline{\alpha}} \cdot f(v) = \alpha \cdot f(v)</math> Conversely, any linear map defined on <math>\overline{V}</math> gives rise to an antilinear map on <math>V.</math> This is the same underlying principle as in defining the [[opposite ring]] so that a right <math>R</math>-[[Right module|module]] can be regarded as a left <math>R^{op}</math>-module, or that of an [[opposite category]] so that a [[contravariant functor]] <math>C \to D</math> can be regarded as an ordinary functor of type <math>C^{op} \to D.</math> ==Complex conjugation functor== A linear map <math>f : V \to W\,</math> gives rise to a corresponding linear map <math>\overline{f} : \overline{V} \to \overline{W}</math> that has the same action as <math>f.</math> Note that <math>\overline f</math> preserves scalar multiplication because <math display="block">\overline{f}(\alpha * v) = f(\overline{\alpha} \cdot v) = \overline{\alpha} \cdot f(v) = \alpha * \overline{f}(v)</math> Thus, complex conjugation <math>V \mapsto \overline{V}</math> and <math>f \mapsto\overline f</math> define a [[functor]] from the [[Category theory|category]] of complex vector spaces to itself. If <math>V</math> and <math>W</math> are finite-dimensional and the map <math>f</math> is described by the complex [[Matrix (mathematics)|matrix]] <math>A</math> with respect to the [[Basis of a vector space|bases]] <math>\mathcal{B}</math> of <math>V</math> and <math>\mathcal{C}</math> of <math>W,</math> then the map <math>\overline{f}</math> is described by the complex conjugate of <math>A</math> with respect to the bases <math>\overline{\mathcal{B}}</math> of <math>\overline{V}</math> and <math>\overline{\mathcal{C}}</math> of <math>\overline{W}.</math> ==Structure of the conjugate== The vector spaces <math>V</math> and <math>\overline{V}</math> have the same [[Dimension of a vector space|dimension]] over the complex numbers and are therefore [[Isomorphism|isomorphic]] as complex vector spaces. However, there is no [[natural isomorphism]] from <math>V</math> to <math>\overline{V}.</math> The double conjugate <math>\overline{\overline{V}}</math> is identical to <math>V.</math> == Complex conjugate of a Hilbert space == Given a [[Hilbert space]] <math>\mathcal{H}</math> (either finite or infinite dimensional), its complex conjugate <math>\overline{\mathcal{H}}</math> is the same vector space as its [[continuous dual space]] <math>\mathcal{H}^{\prime}.</math> There is one-to-one antilinear correspondence between continuous linear functionals and vectors. In other words, any continuous [[linear functional]] on <math>\mathcal{H}</math> is an inner multiplication to some fixed vector, and vice versa.{{citation needed|date=August 2015}} Thus, the complex conjugate to a vector <math>v,</math> particularly in finite dimension case, may be denoted as <math>v^\dagger</math> (v-dagger, a [[row vector]] that is the [[conjugate transpose]] to a column vector <math>v</math>). In [[quantum mechanics]], the conjugate to a ''ket vector'' <math>\,|\psi\rangle</math> is denoted as <math>\langle\psi|\,</math> – a ''bra vector'' (see [[bra–ket notation]]). ==See also== * {{annotated link|Antidual space}} * {{annotated link|Linear complex structure}} * {{annotated link|Riesz representation theorem}} * [[conjugate bundle]] ==References== {{reflist}} ==Further reading== * Budinich, P. and Trautman, A. ''The Spinorial Chessboard''. Springer-Verlag, 1988. {{ISBN|0-387-19078-3}}. (complex conjugate vector spaces are discussed in section 3.3, pag. 26). [[Category:Linear algebra]] [[Category:Vectors (mathematics and physics)|Vector space]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Em
(
edit
)
Template:ISBN
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)