Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Compound Poisson distribution
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Aspect of probability theory}} In [[probability theory]], a '''compound Poisson distribution''' is the [[probability distribution]] of the sum of a number of [[independent identically-distributed random variables]], where the number of terms to be added is itself a [[Poisson distribution|Poisson-distributed]] variable. The result can be either a [[continuous distribution|continuous]] or a [[discrete distribution]]. ==Definition== Suppose that :<math>N\sim\operatorname{Poisson}(\lambda),</math> i.e., ''N'' is a [[random variable]] whose distribution is a [[Poisson distribution]] with [[expected value]] λ, and that :<math>X_1, X_2, X_3, \dots</math> are identically distributed random variables that are mutually independent and also independent of ''N''. Then the probability distribution of the sum of <math>N</math> i.i.d. random variables :<math>Y = \sum_{n=1}^N X_n</math> is a compound Poisson distribution. In the case ''N'' = 0, then this is a sum of 0 terms, so the value of ''Y'' is 0. Hence the conditional distribution of ''Y'' given that ''N'' = 0 is a [[degenerate distribution]]. The compound Poisson distribution is obtained by marginalising the joint distribution of (''Y'',''N'') over ''N'', and this joint distribution can be obtained by combining the conditional distribution ''Y'' | ''N'' with the marginal distribution of ''N''. ==Properties== The [[expected value]] and the [[variance]] of the compound distribution can be derived in a simple way from [[law of total expectation]] and the [[law of total variance]]. Thus :<math>\operatorname{E}(Y)= \operatorname{E}\left[\operatorname{E}(Y \mid N)\right]= \operatorname{E}\left[N \operatorname{E}(X)\right]= \operatorname{E}(N) \operatorname{E}(X) ,</math> : <math> \begin{align} \operatorname{Var}(Y) & = \operatorname{E}\left[\operatorname{Var}(Y\mid N)\right] + \operatorname{Var}\left[\operatorname{E}(Y \mid N)\right] =\operatorname{E} \left[N\operatorname{Var}(X)\right] + \operatorname{Var}\left[N\operatorname{E}(X)\right] , \\[6pt] & = \operatorname{E}(N)\operatorname{Var}(X) + \left(\operatorname{E}(X) \right)^2 \operatorname{Var}(N). \end{align} </math> Then, since E(''N'') = Var(''N'') if ''N'' is Poisson-distributed, these formulae can be reduced to :<math>\operatorname{E}(Y)= \operatorname{E}(N)\operatorname{E}(X) = \lambda\operatorname{E}(X) ,</math> :<math>\operatorname{Var}(Y) = \operatorname{E}(N)(\operatorname{Var}(X) + (\operatorname{E}(X))^2)= \operatorname{E}(N){\operatorname{E}(X^2)} = \lambda{\operatorname{E}(X^2)}.</math> The probability distribution of ''Y'' can be determined in terms of [[Characteristic function (probability theory)|characteristic function]]s: :<math>\varphi_Y(t) = \operatorname{E}(e^{itY})= \operatorname{E} \left( \left(\operatorname{E} (e^{itX}\mid N) \right)^N \right)= \operatorname{E} \left((\varphi_X(t))^N\right), \,</math> and hence, using the [[probability-generating function]] of the Poisson distribution, we have :<math>\varphi_Y(t) = \textrm{e}^{\lambda(\varphi_X(t) - 1)}.\,</math> An alternative approach is via [[cumulant generating function]]s: :<math>K_Y(t)=\ln \operatorname{E}[e^{tY}]=\ln \operatorname E[\operatorname E[e^{tY}\mid N]]=\ln \operatorname E[e^{NK_X(t)}]=K_N(K_X(t)) . \,</math> Via the [[law of total cumulance]] it can be shown that, if the mean of the Poisson distribution ''λ'' = 1, the [[cumulant]]s of ''Y'' are the same as the [[moment (mathematics)|moments]] of ''X''<sub>1</sub>.{{Citation needed|date=October 2010}} Every [[infinite divisibility (probability)|infinitely divisible]] probability distribution is a limit of compound Poisson distributions.<ref>{{cite book |last=Lukacs |first=E. |year=1970 |title=Characteristic functions |location=London |publisher=Griffin |isbn=0-85264-170-2 }}</ref> And compound Poisson distributions is infinitely divisible by the definition. ==Discrete compound Poisson distribution== When <math>X_1, X_2, X_3, \dots</math> are positive integer-valued i.i.d random variables with <math>P(X_1 = k) = \alpha_k,\ (k =1,2, \ldots )</math>, then this compound Poisson distribution is named '''discrete compound Poisson distribution'''<ref name=libro>Johnson, N.L., [[Adrienne W. Kemp|Kemp, A.W.]], and Kotz, S. (2005) Univariate Discrete Distributions, 3rd Edition, Wiley, {{ISBN|978-0-471-27246-5}}.</ref><ref name=zhang>{{Cite journal |first =Zhang | last = Huiming |author2=Yunxiao Liu |author3=Bo Li |title=Notes on discrete compound Poisson model with applications to risk theory |journal=Insurance: Mathematics and Economics |volume=59 |year=2014|pages=325–336 |doi=10.1016/j.insmatheco.2014.09.012}}</ref><ref name=zhang2>{{Cite journal |first =Zhang | last = Huiming |author2=Bo Li |title=Characterizations of discrete compound Poisson distributions |journal=Communications in Statistics - Theory and Methods |volume=45 | issue = 22 |year=2016|pages=6789–6802 |doi=10.1080/03610926.2014.901375| s2cid = 125475756 }}</ref> (or stuttering-Poisson distribution<ref name=kemp>{{cite journal | title = "Stuttering – Poisson" distributions | first = C. D. | last = Kemp | journal = Journal of the Statistical and Social Enquiry of Ireland | year = 1967 | volume = 21 | issue = 5 | pages = 151–157 | hdl = 2262/6987 }}</ref>) . We say that the discrete random variable <math>Y</math> satisfying [[probability generating function]] characterization :<math> P_Y(z) = \sum\limits_{i = 0}^\infty P(Y = i)z^i = \exp\left(\sum\limits_{k = 1}^\infty \alpha_k \lambda (z^k - 1)\right), \quad (|z| \le 1)</math> has a discrete compound Poisson(DCP) distribution with parameters <math>(\alpha_1 \lambda,\alpha_2 \lambda, \ldots ) \in \mathbb{R}^\infty</math> (where <math display="inline">\sum_{i = 1}^\infty \alpha_i = 1</math>, with <math display="inline">\alpha_i \ge 0,\lambda > 0</math>), which is denoted by :<math>X \sim {\text{DCP}}(\lambda {\alpha _1},\lambda {\alpha _2}, \ldots )</math> Moreover, if <math>X \sim {\operatorname{DCP}}(\lambda {\alpha _1}, \ldots ,\lambda {\alpha _r})</math>, we say <math>X</math> has a discrete compound Poisson distribution of order <math>r</math> . When <math>r = 1,2</math>, DCP becomes [[Poisson distribution]] and [[Hermite distribution]], respectively. When <math>r = 3,4</math>, DCP becomes triple stuttering-Poisson distribution and quadruple stuttering-Poisson distribution, respectively.<ref>Patel, Y. C. (1976). Estimation of the parameters of the triple and quadruple stuttering-Poisson distributions. Technometrics, 18(1), 67-73.</ref> Other special cases include: shift [[geometric distribution]], [[negative binomial distribution]], [[Geometric Poisson distribution]], [[Neyman Type A distribution|Neyman type A distribution]], Luria–Delbrück distribution in [[Luria–Delbrück experiment]]. For more special case of DCP, see the reviews paper<ref>Wimmer, G., Altmann, G. (1996). The multiple Poisson distribution, its characteristics and a variety of forms. Biometrical journal, 38(8), 995-1011.</ref> and references therein. Feller's characterization of the compound Poisson distribution states that a non-negative integer valued r.v. <math>X</math> is [[infinite divisibility (probability)|infinitely divisible]] if and only if its distribution is a discrete compound Poisson distribution.<ref>{{cite book |last=Feller |first=W. |year=1968 |title=An Introduction to Probability Theory and its Applications |volume=I |edition=3rd |publisher=Wiley |location=New York }}</ref> The [[negative binomial distribution]] is discrete [[Infinite divisibility (probability)|infinitely divisible]], i.e., if ''X'' has a negative binomial distribution, then for any positive integer ''n'', there exist discrete i.i.d. random variables ''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub> whose sum has the same distribution that ''X'' has. The shift [[geometric distribution]] is discrete compound Poisson distribution since it is a trivial case of [[negative binomial distribution]]. This distribution can model batch arrivals (such as in a [[bulk queue]]<ref name=kemp/><ref>{{cite journal |last=Adelson |first=R. M. |year=1966 |title=Compound Poisson Distributions |journal= [[Journal of the Operational Research Society]]|volume=17 |issue=1 |pages=73–75 |doi=10.1057/jors.1966.8 }}</ref>). The discrete compound Poisson distribution is also widely used in [[actuarial science]] for modelling the distribution of the total claim amount.<ref name=zhang/> When some <math>\alpha_k</math> are negative, it is the discrete pseudo compound Poisson distribution.<ref name=zhang/> We define that any discrete random variable <math>Y</math> satisfying [[probability generating function]] characterization :<math> G_Y(z) = \sum\limits_{i = 0}^\infty P(Y = i)z^i = \exp\left(\sum\limits_{k = 1}^\infty \alpha_k \lambda (z^k - 1)\right), \quad (|z| \le 1)</math> has a discrete pseudo compound Poisson distribution with parameters <math>(\lambda_1 ,\lambda_2, \ldots )=:(\alpha_1 \lambda,\alpha_2 \lambda, \ldots ) \in \mathbb{R}^\infty</math> where <math display="inline">\sum_{i = 1}^\infty {\alpha_i} = 1</math> and <math display="inline">\sum_{i = 1}^\infty {\left| {{\alpha _i}} \right|} < \infty</math>, with <math>{\alpha_i} \in \mathbb{R},\lambda > 0 </math>. ==Compound Poisson Gamma distribution== If ''X'' has a [[gamma distribution]], of which the [[exponential distribution]] is a special case, then the conditional distribution of ''Y'' | ''N'' is again a gamma distribution. The marginal distribution of ''Y'' is a [[Tweedie distribution]] with variance power 1 < ''p'' < 2 (proof via comparison of [[characteristic function (probability theory)|characteristic function]]).<ref name="Jørgensen-1997">{{cite book | author = Jørgensen, Bent | year = 1997 | title = The theory of dispersion models | publisher = Chapman & Hall | isbn = 978-0412997112 }}</ref> To be more explicit, if :<math> N \sim\operatorname{Poisson}(\lambda) ,</math> and :<math> X_i \sim \operatorname{\Gamma}(\alpha, \beta) </math> i.i.d., then the distribution of :<math> Y = \sum_{i=1}^N X_i </math> is a reproductive [[exponential dispersion model]] <math>ED(\mu, \sigma^2)</math> with :<math> \begin{align} \operatorname{E}[Y] & = \lambda \frac{\alpha}{\beta} =: \mu , \\[4pt] \operatorname{Var}[Y]& = \lambda \frac{\alpha(1+\alpha)}{\beta^2}=: \sigma^2 \mu^p . \end{align} </math> The mapping of parameters Tweedie parameter <math>\mu, \sigma^2, p</math> to the Poisson and Gamma parameters <math>\lambda, \alpha, \beta</math> is the following: :<math> \begin{align} \lambda &= \frac{\mu^{2-p}}{(2-p)\sigma^2} , \\[4pt] \alpha &= \frac{2-p}{p-1} , \\[4pt] \beta &= \frac{\mu^{1-p}}{(p-1)\sigma^2} . \end{align} </math> ==Compound Poisson processes== {{Main|Compound Poisson process}} A [[compound Poisson process]] with rate <math>\lambda>0</math> and jump size distribution ''G'' is a continuous-time [[stochastic process]] <math>\{\,Y(t) : t \geq 0 \,\}</math> given by :<math>Y(t) = \sum_{i=1}^{N(t)} D_i,</math> where the sum is by convention equal to zero as long as ''N''(''t'') = 0. Here, <math> \{\,N(t) : t \geq 0\,\}</math> is a [[Poisson process]] with rate <math>\lambda</math>, and <math> \{\,D_i : i \geq 1\,\}</math> are independent and identically distributed random variables, with distribution function ''G'', which are also independent of <math> \{\,N(t) : t \geq 0\,\}.\,</math><ref>{{cite book|author=S. M. Ross|title=Introduction to Probability Models|edition=ninth|publisher=Academic Press|location=Boston|year=2007|isbn=978-0-12-598062-3}}</ref> For the discrete version of compound Poisson process, it can be used in [[survival analysis]] for the frailty models.<ref>{{cite journal |last1=Ata |first1=N. |last2=Özel |first2=G. |year=2013 |title=Survival functions for the frailty models based on the discrete compound Poisson process |journal=Journal of Statistical Computation and Simulation |volume=83 |issue=11 |pages=2105–2116 |doi=10.1080/00949655.2012.679943 |s2cid=119851120 }}</ref> ==Applications== A compound Poisson distribution, in which the summands have an [[exponential distribution]], was used by Revfeim to model the distribution of the total rainfall in a day, where each day contains a Poisson-distributed number of events each of which provides an amount of rainfall which has an exponential distribution.<ref name=Revf>{{cite journal |last=Revfeim |first=K. J. A. |year=1984 |title=An initial model of the relationship between rainfall events and daily rainfalls |journal=Journal of Hydrology |volume=75 |issue=1–4 |pages=357–364 |doi=10.1016/0022-1694(84)90059-3 |bibcode=1984JHyd...75..357R }}</ref> Thompson applied the same model to monthly total rainfalls.<ref name=Thom>{{cite journal |last=Thompson |first=C. S. |year=1984 |title=Homogeneity analysis of a rainfall series: an application of the use of a realistic rainfall model |journal=Journal of Climatology |volume=4 |issue=6 |pages=609–619 |doi=10.1002/joc.3370040605 |bibcode=1984IJCli...4..609T }}</ref> There have been applications to [[Insurance|insurance claims]]<ref>{{cite journal |last1=Jørgensen |first1=Bent |last2=Paes De Souza |first2=Marta C. |title=Fitting Tweedie's compound poisson model to insurance claims data |journal=Scandinavian Actuarial Journal |date=January 1994 |volume=1994 |issue=1 |pages=69–93 |doi=10.1080/03461238.1994.10413930}}</ref><ref>{{cite journal |last1=Smyth |first1=Gordon K. |last2=Jørgensen |first2=Bent |title=Fitting Tweedie's Compound Poisson Model to Insurance Claims Data: Dispersion Modelling |journal=ASTIN Bulletin |date=29 August 2014 |volume=32 |issue=1 |pages=143–157 |doi=10.2143/AST.32.1.1020|doi-access=free }}</ref> and [[CT scan|x-ray computed tomography]].<ref>{{cite journal |last1=Whiting |first1=Bruce R. |editor-first1=Larry E. |editor-first2=Martin J. |editor-last1=Antonuk |editor-last2=Yaffe |title=Signal statistics in x-ray computed tomography |journal=Medical Imaging 2002: Physics of Medical Imaging |date=3 May 2002 |volume=4682 |pages=53–60 |doi=10.1117/12.465601 |publisher=International Society for Optics and Photonics|bibcode=2002SPIE.4682...53W |s2cid=116487704 }}</ref><ref>{{cite journal |last1=Elbakri |first1=Idris A. |last2=Fessler |first2=Jeffrey A. |editor2-first=J. Michael |editor2-last=Fitzpatrick |editor1-first=Milan |editor1-last=Sonka |title=Efficient and accurate likelihood for iterative image reconstruction in x-ray computed tomography |journal=Medical Imaging 2003: Image Processing |date=16 May 2003 |volume=5032 |pages=1839–1850 |doi=10.1117/12.480302 |publisher=SPIE|bibcode=2003SPIE.5032.1839E |s2cid=12215253 |citeseerx=10.1.1.419.3752 }}</ref><ref>{{cite journal |last1=Whiting |first1=Bruce R. |last2=Massoumzadeh |first2=Parinaz |last3=Earl |first3=Orville A. |last4=O'Sullivan |first4=Joseph A. |last5=Snyder |first5=Donald L. |last6=Williamson |first6=Jeffrey F. |title=Properties of preprocessed sinogram data in x-ray computed tomography |journal=Medical Physics |date=24 August 2006 |volume=33 |issue=9 |pages=3290–3303 |doi=10.1118/1.2230762|pmid=17022224 |bibcode=2006MedPh..33.3290W }}</ref> == See also == {{div col|colwidth=30em}} * [[Compound Poisson process]] * [[Hermite distribution]] * [[Negative binomial distribution]] * [[Geometric distribution]] * [[Geometric Poisson distribution]] * [[Gamma distribution]] * [[Poisson distribution]] * [[Zero-inflated model]] {{div col end}} ==References== {{Reflist}} {{ProbDistributions|families}} {{DEFAULTSORT:Compound Poisson Distribution}} [[Category:Discrete distributions]] [[Category:Poisson distribution]] [[Category:Infinitely divisible probability distributions]] [[Category:Compound probability distributions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:ISBN
(
edit
)
Template:Main
(
edit
)
Template:ProbDistributions
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:\alpha i
(
edit
)