Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Compound Poisson process
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Random process in probability theory}} {{Refimprove|date=September 2014}} A '''compound Poisson process''' is a continuous-time [[stochastic process]] with jumps. The jumps arrive randomly according to a [[Poisson process]] and the size of the jumps is also random, with a specified probability distribution. To be precise, a compound Poisson process, parameterised by a rate <math>\lambda > 0</math> and jump size distribution ''G'', is a process <math>\{\,Y(t) : t \geq 0 \,\}</math> given by :<math>Y(t) = \sum_{i=1}^{N(t)} D_i</math> where, <math> \{\,N(t) : t \geq 0\,\}</math> is the counting variable of a [[Poisson process]] with rate <math>\lambda</math>, and <math> \{\,D_i : i \geq 1\,\}</math> are independent and identically distributed random variables, with distribution function ''G'', which are also independent of <math> \{\,N(t) : t \geq 0\,\}.\,</math> When <math> D_i </math> are non-negative integer-valued random variables, then this compound Poisson process is known as a '''stuttering Poisson process.''' {{source needed|date=December 2024}} ==Properties of the compound Poisson process== The [[expected value]] of a compound Poisson process can be calculated using a result known as [[Wald's equation]] as: :<math>\operatorname E(Y(t)) = \operatorname E(D_1 + \cdots + D_{N(t)}) = \operatorname E(N(t))\operatorname E(D_1) = \operatorname E(N(t)) \operatorname E(D) = \lambda t \operatorname E(D).</math> Making similar use of the [[law of total variance]], the [[variance]] can be calculated as: :<math> \begin{align} \operatorname{var}(Y(t)) &= \operatorname E(\operatorname{var}(Y(t)\mid N(t))) + \operatorname{var}(\operatorname E(Y(t)\mid N(t))) \\[5pt] &= \operatorname E(N(t)\operatorname{var}(D)) + \operatorname{var}(N(t) \operatorname E(D)) \\[5pt] &= \operatorname{var}(D) \operatorname E(N(t)) + \operatorname E(D)^2 \operatorname{var}(N(t)) \\[5pt] &= \operatorname{var}(D)\lambda t + \operatorname E(D)^2\lambda t \\[5pt] &= \lambda t(\operatorname{var}(D) + \operatorname E(D)^2) \\[5pt] &= \lambda t \operatorname E(D^2). \end{align} </math> Lastly, using the [[law of total probability]], the [[moment generating function]] can be given as follows: :<math>\Pr(Y(t)=i) = \sum_n \Pr(Y(t)=i\mid N(t)=n)\Pr(N(t)=n) </math> :<math> \begin{align} \operatorname E(e^{sY}) & = \sum_i e^{si} \Pr(Y(t)=i) \\[5pt] & = \sum_i e^{si} \sum_{n} \Pr(Y(t)=i\mid N(t)=n)\Pr(N(t)=n) \\[5pt] & = \sum_n \Pr(N(t)=n) \sum_i e^{si} \Pr(Y(t)=i\mid N(t)=n) \\[5pt] & = \sum_n \Pr(N(t)=n) \sum_i e^{si}\Pr(D_1 + D_2 + \cdots + D_n=i) \\[5pt] & = \sum_n \Pr(N(t)=n) M_D(s)^n \\[5pt] & = \sum_n \Pr(N(t)=n) e^{n\ln(M_D(s))} \\[5pt] & = M_{N(t)}(\ln(M_D(s))) \\[5pt] & = e^{\lambda t \left( M_D(s) - 1 \right) }. \end{align} </math> ==Exponentiation of measures== Let ''N'', ''Y'', and ''D'' be as above. Let ''μ'' be the probability measure according to which ''D'' is distributed, i.e. :<math>\mu(A) = \Pr(D \in A).\,</math> Let ''δ''<sub>0</sub> be the trivial probability distribution putting all of the mass at zero. Then the [[probability distribution]] of ''Y''(''t'') is the measure :<math>\exp(\lambda t(\mu - \delta_0))\,</math> where the exponential exp(''ν'') of a finite measure ''ν'' on [[Borel set|Borel subsets]] of the [[real number|real line]] is defined by :<math>\exp(\nu) = \sum_{n=0}^\infty {\nu^{*n} \over n!}</math> and :<math> \nu^{*n} = \underbrace{\nu * \cdots *\nu}_{n \text{ factors}}</math> is a [[convolution]] of measures, and the series converges [[convergence of random variables|weakly]]. ==See also== * [[Poisson process]] * [[Poisson distribution]] * [[Compound Poisson distribution]] * [[Non-homogeneous Poisson process]] * [[Campbell's formula]] for the [[moment generating function]] of a compound Poisson process {{Stochastic processes}} {{DEFAULTSORT:Compound Poisson Process}} [[Category:Poisson point processes]] [[Category:Lévy processes]] [[de:Poisson-Prozess#Zusammengesetzte Poisson-Prozesse]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Refimprove
(
edit
)
Template:Short description
(
edit
)
Template:Source needed
(
edit
)
Template:Stochastic processes
(
edit
)