Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Conditional quantum entropy
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Measure of relative information in quantum information theory}} The '''conditional quantum entropy''' is an [[entropy measure]] used in [[quantum information theory]]. It is a generalization of the [[conditional entropy]] of [[classical information theory]]. For a bipartite state <math>\rho^{AB}</math>, the conditional entropy is written <math>S(A|B)_\rho</math>, or <math>H(A|B)_\rho</math>, depending on the notation being used for the [[von Neumann entropy]]. The quantum conditional entropy was defined in terms of a conditional density operator <math> \rho_{A|B} </math> by [[Nicolas Cerf]] and [[Chris Adami]],<ref>{{Cite journal|last1=Cerf|first1=N. J.|last2=Adami|first2=C.|date=1997|title=Negative Entropy and Information in Quantum Mechanics|journal=[[Physical Review Letters]]|volume=79|issue=26|pages=5194–5197|doi=10.1103/physrevlett.79.5194|arxiv=quant-ph/9512022|bibcode=1997PhRvL..79.5194C|s2cid=14834430}}</ref><ref>{{Cite journal|last1=Cerf|first1=N. J.|last2=Adami|first2=C.|date=1999-08-01|title=Quantum extension of conditional probability|journal=[[Physical Review A]]|volume=60|issue=2|pages=893–897|doi=10.1103/PhysRevA.60.893|arxiv=quant-ph/9710001|bibcode=1999PhRvA..60..893C|s2cid=119451904 }}</ref> who showed that quantum conditional entropies can be negative, something that is forbidden in classical physics. The negativity of quantum conditional entropy is a sufficient criterion for quantum [[Separable state|non-separability]]. In what follows, we use the notation <math>S(\cdot)</math> for the [[von Neumann entropy]], which will simply be called "entropy". == Definition == Given a bipartite quantum state <math>\rho^{AB}</math>, the entropy of the joint system AB is <math>S(AB)_\rho \ \stackrel{\mathrm{def}}{=}\ S(\rho^{AB})</math>, and the entropies of the subsystems are <math>S(A)_\rho \ \stackrel{\mathrm{def}}{=}\ S(\rho^A) = S(\mathrm{tr}_B\rho^{AB})</math> and <math>S(B)_\rho</math>. The von Neumann entropy measures an observer's uncertainty about the value of the state, that is, how much the state is a [[mixed state (physics)|mixed state]]. By analogy with the classical conditional entropy, one defines the conditional quantum entropy as <math>S(A|B)_\rho \ \stackrel{\mathrm{def}}{=}\ S(AB)_\rho - S(B)_\rho</math>. An equivalent operational definition of the quantum conditional entropy (as a measure of the [[quantum communication]] cost or surplus when performing [[quantum state]] merging) was given by [[Michał Horodecki]], [[Jonathan Oppenheim]], and [[Andreas Winter]].<ref>{{Cite journal|last1=Horodecki|first1=Michał|last2=Oppenheim|first2=Jonathan|last3=Winter|first3=Andreas|title=Partial quantum information|journal=Nature|volume=436|issue=7051|pages=673–676|arxiv=quant-ph/0505062|doi=10.1038/nature03909|bibcode=2005Natur.436..673H|year=2005|pmid=16079840|s2cid=4413693}}</ref> ==Properties== Unlike the classical [[conditional entropy]], the conditional quantum entropy can be negative. This is true even though the (quantum) von Neumann entropy of single variable is never negative. The negative conditional entropy is also known as the [[coherent information]], and gives the additional number of bits above the classical limit that can be transmitted in a quantum dense coding protocol. Positive conditional entropy of a state thus means the state cannot reach even the classical limit, while the negative conditional entropy provides for additional information. ==References== {{reflist}} * {{Cite book|title=Quantum Computation and Quantum Information|last1=Nielsen|first=Michael A.|last2=Chuang|first2=Isaac L.|publisher=Cambridge University Press|year=2010|isbn=978-1-107-00217-3|edition=2nd|location=Cambridge|oclc=844974180|author-link=Michael Nielsen|author-link2=Isaac Chuang|title-link=Quantum Computation and Quantum Information (book)}} *{{citation|first=Mark M.|last=Wilde|arxiv=1106.1445|title=Quantum Information Theory|pages=xi-xii|year=2017|publisher=Cambridge University Press|bibcode = 2011arXiv1106.1445W |doi=10.1017/9781316809976.001|chapter=Preface to the Second Edition|isbn=9781316809976|s2cid=2515538 }} [[Category:Quantum mechanical entropy]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)