Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Conjugate transpose
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Complex matrix A* obtained from a matrix A by transposing it and conjugating each entry}} {{redirect|Adjoint matrix|the transpose of cofactor|Adjugate matrix}} In [[mathematics]], the '''conjugate transpose''', also known as the '''Hermitian transpose''', of an <math>m \times n</math> [[Complex number|complex]] [[matrix (mathematics)|matrix]] <math>\mathbf{A}</math> is an <math>n \times m</math> matrix obtained by [[transpose|transposing]] <math>\mathbf{A}</math> and applying [[complex conjugate|complex conjugation]] to each entry (the complex conjugate of <math>a+ib</math> being <math>a-ib</math>, for real numbers <math>a</math> and <math>b</math>). There are several notations, such as <math>\mathbf{A}^\mathrm{H}</math> or <math>\mathbf{A}^*</math>,<ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=Conjugate Transpose|url=https://mathworld.wolfram.com/ConjugateTranspose.html|access-date=2020-09-08|website=mathworld.wolfram.com|language=en}}</ref> <math>\mathbf{A}'</math>,<ref> H. W. Turnbull, A. C. Aitken, "An Introduction to the Theory of Canonical Matrices," 1932. </ref> or (often in physics) <math>\mathbf{A}^{\dagger}</math>. For [[Real number|real]] matrices, the conjugate transpose is just the transpose, <math>\mathbf{A}^\mathrm{H} = \mathbf{A}^\operatorname{T}</math>. ==Definition== The conjugate transpose of an <math>m \times n</math> matrix <math>\mathbf{A}</math> is formally defined by {{Equation box 1 |indent = |title= |equation = {{NumBlk||<math>\left(\mathbf{A}^\mathrm{H}\right)_{ij} = \overline{\mathbf{A}_{ji}}</math>|{{EquationRef|Eq.1}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} where the subscript <math>ij</math> denotes the <math>(i,j)</math>-th entry (matrix element), for <math>1 \le i \le n</math> and <math>1 \le j \le m</math>, and the overbar denotes a scalar complex conjugate. This definition can also be written as :<math>\mathbf{A}^\mathrm{H} = \left(\overline{\mathbf{A}}\right)^\operatorname{T} = \overline{\mathbf{A}^\operatorname{T}}</math> where <math>\mathbf{A}^\operatorname{T}</math> denotes the transpose and <math>\overline{\mathbf{A}}</math> denotes the matrix with complex conjugated entries. Other names for the conjugate transpose of a matrix are '''Hermitian transpose''', '''Hermitian conjugate''', '''adjoint matrix''' or '''transjugate'''. The conjugate transpose of a matrix <math>\mathbf{A}</math> can be denoted by any of these symbols: * <math>\mathbf{A}^*</math>, commonly used in [[linear algebra]] * <math>\mathbf{A}^\mathrm{H}</math>, commonly used in linear algebra * <math>\mathbf{A}^\dagger</math> (sometimes pronounced as ''A [[dagger (typography)|dagger]]''), commonly used in [[quantum mechanics]] * <math>\mathbf{A}^+</math>, although this symbol is more commonly used for the [[Moore–Penrose pseudoinverse]] In some contexts, <math>\mathbf{A}^*</math> denotes the matrix with only complex conjugated entries and no transposition. ==Example== Suppose we want to calculate the conjugate transpose of the following matrix <math>\mathbf{A}</math>. :<math>\mathbf{A} = \begin{bmatrix} 1 & -2 - i & 5 \\ 1 + i & i & 4-2i \end{bmatrix}</math> We first transpose the matrix: :<math>\mathbf{A}^\operatorname{T} = \begin{bmatrix} 1 & 1 + i \\ -2 - i & i \\ 5 & 4-2i\end{bmatrix}</math> Then we conjugate every entry of the matrix: :<math>\mathbf{A}^\mathrm{H} = \begin{bmatrix} 1 & 1 - i \\ -2 + i & -i \\ 5 & 4+2i\end{bmatrix}</math> ==Basic remarks== A square matrix <math>\mathbf{A}</math> with entries <math>a_{ij}</math> is called * [[hermitian matrix|Hermitian]] or [[self-adjoint_operator|self-adjoint]] if <math>\mathbf{A}=\mathbf{A}^\mathrm{H}</math>; i.e., <math>a_{ij} = \overline{a_{ji}}</math>. * [[skew-Hermitian matrix|Skew Hermitian]] or antihermitian if <math>\mathbf{A}=-\mathbf{A}^\mathrm{H}</math>; i.e., <math>a_{ij} = -\overline{a_{ji}}</math>. * [[normal matrix|Normal]] if <math>\mathbf{A}^\mathrm{H} \mathbf{A} = \mathbf{A} \mathbf{A}^\mathrm{H}</math>. * [[Unitary matrix|Unitary]] if <math>\mathbf{A}^\mathrm{H} = \mathbf{A}^{-1}</math>, equivalently <math>\mathbf{A}\mathbf{A}^\mathrm{H} = \boldsymbol{I}</math>, equivalently <math>\mathbf{A}^\mathrm{H}\mathbf{A} = \boldsymbol{I}</math>. Even if <math>\mathbf{A}</math> is not square, the two matrices <math>\mathbf{A}^\mathrm{H}\mathbf{A}</math> and <math>\mathbf{A}\mathbf{A}^\mathrm{H}</math> are both Hermitian and in fact [[positive-definite matrix|positive semi-definite matrices]]. The conjugate transpose "adjoint" matrix <math>\mathbf{A}^\mathrm{H}</math> should not be confused with the [[adjugate]], <math>\operatorname{adj}(\mathbf{A})</math>, which is also sometimes called ''adjoint''. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by <math>2 \times 2</math> real matrices, obeying matrix addition and multiplication: <math display="block">a + ib \equiv \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.</math> That is, denoting each ''complex'' number <math>z</math> by the ''real'' <math>2 \times 2</math> matrix of the linear transformation on the [[Argand diagram]] (viewed as the ''real'' vector space <math>\mathbb{R}^2</math>), affected by complex ''<math>z</math>''-multiplication on <math>\mathbb{C}</math>. Thus, an <math>m \times n</math> matrix of complex numbers could be well represented by a <math>2m \times 2n</math> matrix of real numbers. The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an <math>n \times m</math> matrix made up of complex numbers. For an explanation of the notation used here, we begin by representing complex numbers <math>e^{i\theta}</math> as the rotation matrix, that is, <math display="block"> e^{i\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. </math> Since <math>e^{i\theta} = \cos \theta + i \sin \theta</math>, we are led to the matrix representations of the unit numbers as <math display="block"> 1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. </math> A general complex number <math>z=x+iy</math> is then represented as <math> z = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}. </math> The [[complex conjugate]] operation (that sends <math>a + bi</math> to <math>a - bi</math> for real <math>a, b</math>) is encoded as the matrix transpose.<ref>{{cite book |last=Chasnov |first=Jeffrey R. |url=https://math.libretexts.org/Bookshelves/Differential_Equations/Applied_Linear_Algebra_and_Differential_Equations_(Chasnov)/02%3A_II._Linear_Algebra/01%3A_Matrices/1.06%3A_Matrix_Representation_of_Complex_Numbers |title=Applied Linear Algebra and Differential Equations |date=4 February 2022 |publisher=LibreTexts |contribution=1.6: Matrix Representation of Complex Numbers}}</ref> ==Properties== * <math>(\mathbf{A} + \boldsymbol{B})^\mathrm{H} = \mathbf{A}^\mathrm{H} + \boldsymbol{B}^\mathrm{H}</math> for any two matrices <math>\mathbf{A}</math> and <math>\boldsymbol{B}</math> of the same dimensions. * <math>(z\mathbf{A})^\mathrm{H} = \overline{z} \mathbf{A}^\mathrm{H}</math> for any complex number <math>z</math> and any <math>m \times n</math> matrix <math>\mathbf{A}</math>. * <math>(\mathbf{A}\boldsymbol{B})^\mathrm{H} = \boldsymbol{B}^\mathrm{H} \mathbf{A}^\mathrm{H}</math> for any <math>m \times n</math> matrix <math>\mathbf{A}</math> and any <math>n \times p</math> matrix <math>\boldsymbol{B}</math>. Note that the order of the factors is reversed.<ref name=":1" /> * <math>\left(\mathbf{A}^\mathrm{H}\right)^\mathrm{H} = \mathbf{A}</math> for any <math>m \times n</math> matrix <math>\mathbf{A}</math>, i.e. Hermitian transposition is an [[Involution (mathematics)|involution]]. * If <math>\mathbf{A}</math> is a square matrix, then <math>\det\left(\mathbf{A}^\mathrm{H}\right) = \overline{\det\left(\mathbf{A}\right)}</math> where <math>\operatorname{det}(A)</math> denotes the [[determinant]] of <math>\mathbf{A}</math> . * If <math>\mathbf{A}</math> is a square matrix, then <math>\operatorname{tr}\left(\mathbf{A}^\mathrm{H}\right) = \overline{\operatorname{tr}(\mathbf{A})}</math> where <math>\operatorname{tr}(A)</math> denotes the [[trace (matrix)|trace]] of <math>\mathbf{A}</math>. * <math>\mathbf{A}</math> is [[invertible matrix|invertible]] [[if and only if]] <math>\mathbf{A}^\mathrm{H}</math> is invertible, and in that case <math>\left(\mathbf{A}^\mathrm{H}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\mathrm{H}}</math>. * The [[eigenvalue]]s of <math>\mathbf{A}^\mathrm{H}</math> are the complex conjugates of the [[eigenvalue]]s of <math>\mathbf{A}</math>. * <math>\left\langle \mathbf{A} x,y \right\rangle_m = \left\langle x, \mathbf{A}^\mathrm{H} y\right\rangle_n </math> for any <math>m \times n</math> matrix <math>\mathbf{A}</math>, any vector in <math>x \in \mathbb{C}^n </math> and any vector <math>y \in \mathbb{C}^m </math>. Here, <math>\langle\cdot,\cdot\rangle_m</math> denotes the standard complex [[inner product]] on <math> \mathbb{C}^m </math>, and similarly for <math>\langle\cdot,\cdot\rangle_n</math>. ==Generalizations== The last property given above shows that if one views <math>\mathbf{A}</math> as a [[linear transformation]] from [[Hilbert space]] <math> \mathbb{C}^n </math> to <math> \mathbb{C}^m ,</math> then the matrix <math>\mathbf{A}^\mathrm{H}</math> corresponds to the [[Hermitian adjoint|adjoint operator]] of <math>\mathbf A</math>. The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis. Another generalization is available: suppose <math>A</math> is a linear map from a complex [[vector space]] <math>V</math> to another, <math>W</math>, then the [[complex conjugate linear map]] as well as the [[transpose of a linear map|transposed linear map]] are defined, and we may thus take the conjugate transpose of <math>A</math> to be the complex conjugate of the transpose of <math>A</math>. It maps the conjugate [[dual space|dual]] of <math>W</math> to the conjugate dual of <math>V</math>. ==See also== *[[Complex dot product]] *[[Hermitian adjoint]] *[[Adjugate matrix]] == References == <references /> ==External links== * {{springer|title=Adjoint matrix|id=p/a010850}} [[Category:Linear algebra]] [[Category:Matrices (mathematics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Equation box 1
(
edit
)
Template:Redirect
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)