Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Constructive logic
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{use dmy dates|date=April 2025}} '''Constructive logic''' is a family of logics where proofs must be constructive (i.e., proving something means one must build or exhibit it, not just argue it “must exist” abstractly). No “non-constructive” proofs are allowed (like the classic proof by contradiction without a witness). The main constructive logics are the following: == 1. Intuitionistic logic == {{main|Intuitionistic logic}} '''Founder''': [[L. E. J. Brouwer]] (1908, philosophy){{sfn|Brouwer|1908}}{{sfn|Brouwer|1913}} formalized by [[Arend Heyting|A. Heyting]] (1930){{sfn|Heyting|1930}} and [[Andrey Kolmogorov|A. N. Kolmogorov]] (1932){{sfn|Kolmogorov|1932}} '''Key Idea''': Truth = having a proof. One cannot assert “<math>P</math> or not <math>P</math>” unless one can prove <math>P</math> or prove <math>\neg \neg P</math>. '''Features''': * No [[law of excluded middle]] (<math>P \lor \neg P</math> is not generally valid). * No [[Double negation#Elimination and introduction|double negation elimination]] (<math>\neg \neg\ P \to P</math> is not valid generally). * [[Material conditional|Implication]] is constructive: a proof of <math>P \to Q</math> is a method turning any proof of P into a proof of Q. '''Used in''': [[type theory]], [[Constructivism (philosophy of mathematics)|constructive mathematics]]. == 2. Modal logics for constructive reasoning == {{main|Modal companion}} '''Founder(s)''': * [[Kurt Gödel|K F. Gödel]] (1933) showed that intuitionistic logic can be embedded into [[Modal logic|modal logic S4]].{{sfn|Gödel|1986|pages=300-302}} * (other systems) '''Interpretation''' (Gödel): <math>\Box P</math> means “<math>P</math> is provable” (or “necessarily <math>P</math>” in the proof sense). '''Further''': Modern provability logics build on this. == 3. Minimal logic == {{main|Minimal logic}} Simpler than intuitionistic logic. '''Founder''': [[Ingebrigt Johansson|I. Johansson]] (1937){{sfn|Johansson|1937}} '''Key Idea''': Like intuitionistic logic but without assuming the [[principle of explosion]] (ex falso quodlibet, “from falsehood, anything follows”). '''Features''': * Doesn’t automatically infer any proposition from a contradiction. '''Used for''': Studying logics without commitment to contradictions blowing up the system. == 4. Intuitionistic type theory (Martin-Löf type theory) == {{main|Intuitionistic type theory}} '''Founder''': [[Per Martin-Löf|P. E. R. Martin-Löf]] (1970s) '''Key Idea''': Types = propositions, terms = proofs (this is the [[Curry–Howard correspondence]]). '''Features''': * Every proof is a program (and vice versa). * Very strict — everything must be directly constructible. '''Used in''': Proof assistants like [[Rocq|Coq]], [[Agda (programming language)|Agda]]. == 5. Linear logic == {{main|Linear logic}} Not strictly intuitionistic, but very constructive. '''Founder''': [[Jean-Yves Girard|J. Girard]] (1987){{sfn|Girard|1987}} '''Key Idea''': Resource sensitivity — one can only use an assumption once unless one specifically says it can be reused. '''Features''': * Tracks “how many times” one can use a proof. * Splits conjunction/disjunction into multiple types (e.g., additive vs. multiplicative). '''Used in''': Computer science, concurrency, quantum logic. == 6. Other Constructive Systems == * '''[[Constructive set theory]]''' (e.g., CZF — Constructive Zermelo–Fraenkel set theory): Builds sets constructively. * '''[[Realizability|Realizability Theory]]''': Ties constructive logic to computability — proofs correspond to algorithms. * '''[[Topos|Topos Logic]]''': Internal logics of topoi (generalized spaces) are intuitionistic. == See also == * [[Constructivism (philosophy of mathematics)]] == Notes == {{Reflist|2}} ==References== * {{cite book | editor1-last = Berka | editor1-first = Karel | editor2-last = Kreiser | editor2-first = Lothar | title = Logik-Texte | publisher = [[De Gruyter]] | date=1986 | doi=10.1515/9783112645826 | isbn = 978-3-11-264582-6 }} * {{cite book | last = Brouwer | first = Luitzen Egbertus Jan | author-link = L. E. J. Brouwer | title = Over de Grondslagen der Wiskunde | publisher = N.V. Uitgeversmaatschappij Sijthoff | year = 1908 | language = Dutch }} * {{cite journal | last = Brouwer | first = Luitzen Egbertus Jan | author-link = L. E. J. Brouwer | title = Intuitionism and Formalism | url = https://www.ams.org/journals/bull/2000-37-01/S0273-0979-99-00802-2/S0273-0979-99-00802-2.pdf | journal = [[Bulletin of the American Mathematical Society]] | volume = 19 | number = 6 | pages = 191–194 | year = 1913 }} *{{cite journal | last = Girard | first = Jean-Yves | author-link = Jean-Yves Girard | title = Linear logic | journal = Theoretical Computer Science | volume = 50 | issue = 1 | pages = 1–101 | year = 1987 | doi = 10.1016/0304-3975(87)90045-4 | publisher = Elsevier }} *{{cite book | last = Gödel | first = Kurt | author-link = Kurt Gödel | series = Collected Works | volume = I | year = 1986 | orig-year = 1933 | chapter = Eine Interpretation des intuitionistischen Aussagenkalkiils | title = Publications 1929–1936 | url = https://antilogicalism.com/wp-content/uploads/2021/12/Godel-1.pdf | editor1-last = Feferman | editor1-first = Solomon | editor1-link = Solomon Feferman | editor2-last = Dawson, Jr. | editor2-first = John W. | editor2-link = John W. Dawson Jr. | editor3-last = Kleene | editor3-first = Stephen C. | editor3-link = Stephen Cole Kleene | editor4-last = Moore | editor4-first = Gregory H. | editor5-last = Solovay | editor5-first = Robert M. | editor5-link = Robert M. Solovay | editor6-last = Van Heijenoort | editor6-first = Jean | editor6-link = Jean van Heijenoort | location = New York | publisher = Oxford University Press | isbn = 978-0-19-503964-1 }} / Paperback: {{isbn|978-0-19-514720-9}} * {{cite journal | last = Heyting | first = Arend | author-link = Arend Heyting | year = 1930 | title = Die formalen Regeln der intuitionistischen Logik | language = de | journal = Sitzungsberichte der preußischen Akademie der Wissenschaften, phys.-math. Klasse | pages = 42–56, 57–71, 158–169 | oclc = 601568391 }}<br/>(abridged reprint in {{harvnb|Berka|Kreiser|1986|pages=188-192}}) *{{cite journal | last = Johansson | first = Ingebrigt | author-link = Ingebrigt Johansson | year = 1937 | title = Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus | url = http://www.numdam.org/item/CM_1937__4__119_0 | journal = [[Compositio Mathematica]] | volume = 4 | pages = 119–136 | language = de }} *{{cite journal | last = Kolmogorov | first = Andrey | author-link = Andrey Kolmogorov | title = On the Principle of Excluded Middle | journal = Mathematical Logic Quarterly | volume = 10 | pages = 65–74 | year = 1932 }} {{Non-classical logic}} {{Authority control}} [[Category:Logic in computer science]] [[Category:Non-classical logic]] [[Category:Constructivism (mathematics)]] [[Category:Systems of formal logic]] [[Category:Intuitionism]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Harvnb
(
edit
)
Template:Isbn
(
edit
)
Template:Main
(
edit
)
Template:Non-classical logic
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Use dmy dates
(
edit
)