Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convex conjugate
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Generalization of the Legendre transformation}} <!-- Contents mostly taken from [[Legendre transformation]]. --> In [[mathematics]] and [[mathematical optimization]], the '''convex conjugate''' of a function is a generalization of the [[Legendre transformation]] which applies to non-convex functions. It is also known as '''Legendre–Fenchel transformation''', '''Fenchel transformation''', or '''Fenchel conjugate''' (after [[Adrien-Marie Legendre]] and [[Werner Fenchel]]). The convex conjugate is widely used for constructing the [[Duality (optimization)|dual problem]] in [[optimization theory]], thus generalizing [[Duality (optimization)#Lagrange duality|Lagrangian duality]]. == Definition == Let <math>X</math> be a [[real number|real]] [[topological vector space]] and let <math>X^{*}</math> be the [[dual space]] to <math>X</math>. Denote by :<math>\langle \cdot , \cdot \rangle : X^{*} \times X \to \mathbb{R}</math> the canonical [[dual pair]]ing, which is defined by <math>\left\langle x^*, x \right\rangle \mapsto x^* (x).</math> For a function <math>f : X \to \mathbb{R} \cup \{ - \infty, + \infty \}</math> taking values on the [[extended real number line]], its '''{{em|convex conjugate}}''' is the function :<math>f^{*} : X^{*} \to \mathbb{R} \cup \{ - \infty, + \infty \}</math> whose value at <math>x^* \in X^{*}</math> is defined to be the [[supremum]]: :<math>f^{*} \left( x^{*} \right) := \sup \left\{ \left\langle x^{*}, x \right\rangle - f (x) ~\colon~ x \in X \right\},</math> or, equivalently, in terms of the [[infimum]]: :<math>f^{*} \left( x^{*} \right) := - \inf \left\{ f (x) - \left\langle x^{*}, x \right\rangle ~\colon~ x \in X \right\}.</math> This definition can be interpreted as an encoding of the [[convex hull]] of the function's [[Epigraph (mathematics)|epigraph]] in terms of its [[supporting hyperplane]]s.<ref>{{cite web|url=https://physics.stackexchange.com/a/9360/821 |title=Legendre Transform |accessdate=April 14, 2019}}</ref> == Examples == For more examples, see {{Section link||Table of selected convex conjugates}}. * The convex conjugate of an [[affine function]] <math> f(x) = \left\langle a, x \right\rangle - b</math> is <math display="block"> f^{*}\left(x^{*} \right) = \begin{cases} b, & x^{*} = a \\ +\infty, & x^{*} \ne a. \end{cases} </math> * The convex conjugate of a [[power function]] <math> f(x) = \frac{1}{p}|x|^p, 1 < p < \infty </math> is <math display="block"> f^{*}\left(x^{*} \right) = \frac{1}{q}|x^{*}|^q, 1<q<\infty, \text{where} \tfrac{1}{p} + \tfrac{1}{q} = 1.</math> * The convex conjugate of the [[absolute value]] function <math>f(x) = \left| x \right|</math> is <math display="block"> f^{*}\left(x^{*} \right) = \begin{cases} 0, & \left|x^{*} \right| \le 1 \\ \infty, & \left|x^{*} \right| > 1. \end{cases} </math> * The convex conjugate of the [[exponential function]] <math>f(x)= e^x</math> is <math display="block"> f^{*}\left(x^{*} \right) = \begin{cases} x^{*} \ln x^{*} - x^{*} , & x^{*} > 0 \\ 0 , & x^{*} = 0 \\ \infty , & x^{*} < 0. \end{cases} </math> The convex conjugate and Legendre transform of the exponential function agree except that the [[domain of a function|domain]] of the convex conjugate is strictly larger as the Legendre transform is only defined for [[positive real numbers]]. ===Connection with expected shortfall (average value at risk)=== See [https://link.springer.com/article/10.1007/s10107-014-0801-1 this article for example.] Let ''F'' denote a [[cumulative distribution function]] of a [[random variable]] ''X''. Then ([[Integration by parts|integrating by parts]]), <math display="block">f(x):= \int_{-\infty}^x F(u) \, du = \operatorname{E}\left[\max(0,x-X)\right] = x-\operatorname{E} \left[\min(x,X)\right]</math> has the convex conjugate <math display="block">f^{*}(p)= \int_0^p F^{-1}(q) \, dq = (p-1)F^{-1}(p)+\operatorname{E}\left[\min(F^{-1}(p),X)\right] = p F^{-1}(p)-\operatorname{E}\left[\max(0,F^{-1}(p)-X)\right].</math> === Ordering === A particular interpretation has the transform <math display="block">f^\text{inc}(x):= \arg \sup_t t\cdot x-\int_0^1 \max\{t-f(u),0\} \, du,</math> as this is a nondecreasing rearrangement of the initial function ''f''; in particular, <math>f^\text{inc}= f</math> for ''f'' nondecreasing. == Properties == The convex conjugate of a [[closed convex function]] is again a closed convex function. The convex conjugate of a [[polyhedral convex function]] (a convex function with [[Polyhedron|polyhedral]] [[Epigraph (mathematics)|epigraph]]) is again a polyhedral convex function. === Order reversing=== Declare that <math>f \le g</math> if and only if <math>f(x) \le g(x)</math> for all <math>x.</math> Then convex-conjugation is [[Order theory|order-reversing]], which by definition means that if <math>f \le g</math> then <math>f^* \ge g^*.</math> For a family of functions <math>\left(f_\alpha\right)_\alpha</math> it follows from the fact that supremums may be interchanged that :<math>\left(\inf_\alpha f_\alpha\right)^*(x^*) = \sup_\alpha f_\alpha^*(x^*),</math> and from the [[max–min inequality]] that :<math>\left(\sup_\alpha f_\alpha\right)^*(x^*) \le \inf_\alpha f_\alpha^*(x^*).</math> === Biconjugate === The convex conjugate of a function is always [[lower semi-continuous]]. The '''biconjugate''' <math>f^{**}</math> (the convex conjugate of the convex conjugate) is also the [[closed convex hull]], i.e. the largest [[lower semi-continuous]] convex function with <math>f^{**} \le f.</math> For [[Proper convex function|proper functions]] <math>f,</math> :<math>f = f^{**}</math> [[if and only if]] <math>f</math> is convex and lower semi-continuous, by the [[Fenchel–Moreau theorem]]. === Fenchel's inequality === For any function {{mvar|f}} and its convex conjugate {{math|''f'' *}}, '''Fenchel's inequality''' (also known as the '''Fenchel–Young inequality''') holds for every <math>x \in X</math> and {{nowrap|<math>p \in X^{*}</math>:}} :<math>\left\langle p,x \right\rangle \le f(x) + f^*(p).</math> Furthermore, the equality holds only when <math>p \in \partial f(x)</math>. The proof follows from the definition of convex conjugate: <math>f^*(p) = \sup_{\tilde x} \left\{ \langle p,\tilde x \rangle - f(\tilde x) \right\} \ge \langle p,x \rangle - f(x).</math> === Convexity === For two functions <math>f_0</math> and <math>f_1</math> and a number <math>0 \le \lambda \le 1</math> the convexity relation :<math>\left((1-\lambda) f_0 + \lambda f_1\right)^{*} \le (1-\lambda) f_0^{*} + \lambda f_1^{*}</math> holds. The <math>{*}</math> operation is a convex mapping itself. === Infimal convolution === The '''infimal convolution''' (or epi-sum) of two functions <math>f</math> and <math>g</math> is defined as :<math>\left( f \operatorname{\Box} g \right)(x) = \inf \left\{ f(x-y) + g(y) \mid y \in \mathbb{R}^n \right\}.</math> Let <math>f_1, \ldots, f_{m}</math> be [[Proper convex function|proper]], convex and [[Semi-continuity|lower semicontinuous]] functions on <math>\mathbb{R}^{n}.</math> Then the infimal convolution is convex and lower semicontinuous (but not necessarily proper),<ref>{{cite book |last=Phelps |first=Robert |authorlink=Robert R. Phelps |title=Convex Functions, Monotone Operators and Differentiability|url=https://archive.org/details/convexfunctionsm00phel |url-access=limited | edition=2 |year=1993|publisher=Springer |isbn= 0-387-56715-1|page= [https://archive.org/details/convexfunctionsm00phel/page/n50 42]}}</ref> and satisfies :<math>\left( f_1 \operatorname{\Box} \cdots \operatorname{\Box} f_m \right)^{*} = f_1^{*} + \cdots + f_m^{*}.</math> The infimal convolution of two functions has a geometric interpretation: The (strict) [[epigraph (mathematics)|epigraph]] of the infimal convolution of two functions is the [[Minkowski sum]] of the (strict) epigraphs of those functions.<ref>{{cite journal |doi=10.1137/070687542 |title=The Proximal Average: Basic Theory |year=2008 |last1=Bauschke |first1=Heinz H. |last2=Goebel |first2=Rafal |last3=Lucet |first3=Yves |last4=Wang |first4=Xianfu |journal=SIAM Journal on Optimization |volume=19 |issue=2 |pages=766|citeseerx=10.1.1.546.4270 }}</ref> === Maximizing argument === If the function <math>f</math> is differentiable, then its derivative is the maximizing argument in the computation of the convex conjugate: :<math>f^\prime(x) = x^*(x):= \arg\sup_{x^{*}} {\langle x, x^{*}\rangle} -f^{*}\left( x^{*} \right)</math> and :<math>f^{{*}\prime}\left( x^{*} \right) = x\left( x^{*} \right):= \arg\sup_x {\langle x, x^{*}\rangle} - f(x);</math> hence :<math>x = \nabla f^{{*}}\left( \nabla f(x) \right),</math> :<math>x^{*} = \nabla f\left( \nabla f^{{*}}\left( x^{*} \right)\right),</math> and moreover :<math>f^{\prime\prime}(x) \cdot f^{{*}\prime\prime}\left( x^{*}(x) \right) = 1,</math> :<math>f^{{*}\prime\prime}\left( x^{*} \right) \cdot f^{\prime\prime}\left( x(x^{*}) \right) = 1.</math> === Scaling properties === If for some <math>\gamma>0,</math> <math>g(x) = \alpha + \beta x + \gamma \cdot f\left( \lambda x + \delta \right)</math>, then :<math>g^{*}\left( x^{*} \right)= - \alpha - \delta\frac{x^{*}-\beta} \lambda + \gamma \cdot f^{*}\left(\frac {x^{*}-\beta}{\lambda \gamma}\right).</math> === Behavior under linear transformations === Let <math>A : X \to Y</math> be a [[bounded linear operator]]. For any convex function <math>f</math> on <math>X,</math> :<math>\left(A f\right)^{*} = f^{*} A^{*}</math> where :<math>(A f)(y) = \inf\{ f(x) : x \in X , A x = y \}</math> is the preimage of <math>f</math> with respect to <math>A</math> and <math>A^{*}</math> is the [[adjoint operator]] of <math>A.</math><ref>Ioffe, A.D. and Tichomirov, V.M. (1979), ''Theorie der Extremalaufgaben''. [[Deutscher Verlag der Wissenschaften]]. Satz 3.4.3</ref> A closed convex function <math>f</math> is symmetric with respect to a given set <math>G</math> of [[orthogonal matrix|orthogonal linear transformation]]s, :<math>f(A x) = f(x)</math> for all <math>x</math> and all <math>A \in G</math> if and only if its convex conjugate <math>f^{*}</math> is symmetric with respect to <math>G.</math> == Table of selected convex conjugates == The following table provides Legendre transforms for many common functions as well as a few useful properties.<ref>{{cite book |last1=Borwein |first1=Jonathan |authorlink1=Jonathan Borwein|last2=Lewis |first2=Adrian |title=Convex Analysis and Nonlinear Optimization: Theory and Examples|url=https://archive.org/details/convexanalysisno00borw_812 |url-access=limited | edition=2 |year=2006 |publisher=Springer |isbn=978-0-387-29570-1|pages=[https://archive.org/details/convexanalysisno00borw_812/page/n62 50]–51}}</ref> {| class="wikitable" |- !<math>g(x)</math> !! <math>\operatorname{dom}(g)</math> !! <math>g^*(x^*)</math> !! <math>\operatorname{dom}(g^*)</math> |- | <math>f(ax)</math> (where <math>a \neq 0</math>) || <math>X</math> || <math>f^*\left(\frac{x^*}{a}\right)</math> || <math>X^*</math> |- | <math>f(x + b)</math> || <math>X</math> || <math>f^*(x^*) - \langle b,x^* \rangle</math> || <math>X^*</math> |- | <math>a f(x)</math> (where <math>a > 0</math>) || <math>X</math> || <math>a f^*\left(\frac{x^*}{a}\right)</math> || <math>X^*</math> |- | <math>\alpha+ \beta x+ \gamma \cdot f(\lambda x+\delta)</math> || <math>X</math> ||<math>-\alpha- \delta\frac{x^*-\beta}\lambda+ \gamma \cdot f^* \left(\frac {x^*-\beta}{\gamma \lambda}\right)\quad (\gamma>0)</math> || <math>X^*</math> |- | <math>\frac{|x|^p}{p}</math> (where <math>p > 1</math>) || <math>\mathbb{R}</math> || <math>\frac{|x^*|^q}{q} </math> (where <math>\frac{1}{p} + \frac{1}{q} = 1</math>) || <math>\mathbb{R}</math> |- | <math>\frac{-x^p}{p}</math> (where <math>0 < p < 1</math>) || <math>\mathbb{R}_+</math> || <math>\frac{-(-x^*)^q}q</math> (where <math>\frac 1 p + \frac 1 q = 1</math>) || <math>\mathbb{R}_{--}</math> |- | <math>\sqrt{1 + x^2}</math> || <math>\mathbb{R}</math> || <math>-\sqrt{1 - (x^*)^2}</math> || <math>[-1,1]</math> |- | <math>-\log(x)</math> || <math>\mathbb{R}_{++}</math> || <math>-(1 + \log(-x^*))</math> || <math>\mathbb{R}_{--}</math> |- | <math>e^x</math> || <math>\mathbb{R}</math> || <math>\begin{cases}x^* \log(x^*) - x^* & \text{if }x^* > 0\\ 0 & \text{if }x^* = 0\end{cases}</math> || <math>\mathbb{R}_{+}</math> |- | <math>\log\left(1 + e^x\right)</math> || <math>\mathbb{R}</math> || <math>\begin{cases}x^* \log(x^*) + (1 - x^*) \log(1 - x^*) & \text{if }0 < x^* < 1\\ 0 & \text{if }x^* = 0,1\end{cases}</math> || <math>[0,1]</math> |- | <math>-\log\left(1 - e^x\right)</math> || <math>\mathbb{R}_{--}</math> || <math>\begin{cases}x^* \log(x^*) - (1 + x^*) \log(1 + x^*) & \text{if }x^* > 0\\ 0 & \text{if }x^* = 0\end{cases}</math> || <math>\mathbb{R}_+</math> |} == See also == * [[Dual problem]] * [[Fenchel's duality theorem]] * [[Legendre transformation]] * [[Young's inequality for products]] == References == <references/> * {{cite book | authorlink=Vladimir Igorevich Arnol'd | last=Arnol'd | first=Vladimir Igorevich | title=Mathematical Methods of Classical Mechanics | edition=Second | publisher=Springer | year=1989 | isbn=0-387-96890-3 | mr=997295 | url-access=registration | url=https://archive.org/details/mathematicalmeth0000arno }} * {{Rockafellar Wets Variational Analysis 2009 Springer}} <!-- {{sfn|Rockafellar|Wets|2009|p=}} --> * {{cite book | last = Rockafellar | first = R. Tyrell | authorlink = R. Tyrrell Rockafellar | title = Convex Analysis | publisher = Princeton University Press | year = 1970 | location = Princeton | isbn=0-691-01586-4 | mr = 0274683 }} == Further reading == * {{cite web |url = http://www.physics.sun.ac.za/~htouchette/archive/notes/lfth2.pdf |title = Legendre-Fenchel transforms in a nutshell |last = Touchette |first = Hugo |date = 2014-10-16 |website = |publisher = |accessdate = 2017-01-09 |archive-url = https://web.archive.org/web/20170407134235/http://www.physics.sun.ac.za/~htouchette/archive/notes/lfth2.pdf |archive-date = 2017-04-07 |url-status = dead }} * {{cite web |url = http://www.physics.sun.ac.za/~htouchette/archive/convex1.pdf |title = Elements of convex analysis |accessdate = 2008-03-26 |last = Touchette |first = Hugo |date = 2006-11-21 |archive-url = https://web.archive.org/web/20150526090548/http://www.physics.sun.ac.za/~htouchette/archive/convex1.pdf |archive-date = 2015-05-26 |url-status = dead }} * {{cite book |title=Intellectual Trespassing as a Way of Life: Essays in Philosophy, Economics, and Mathematics |chapter=Chapter 12: Parallel Addition, Series-Parallel Duality, and Financial Mathematics |quote=Series G - Reference, Information and Interdisciplinary Subjects Series |series=The worldly philosophy: studies in intersection of philosophy and economics |author-first=David Patterson |author-last=Ellerman |author-link=David Patterson Ellerman |publisher=[[Rowman & Littlefield Publishers, Inc.]] |date=1995-03-21 |isbn=0-8476-7932-2 |pages=237–268 |url=http://www.ellerman.org/wp-content/uploads/2012/12/IntellectualTrespassingBook.pdf |chapter-url=https://books.google.com/books?id=NgJqXXk7zAAC&pg=PA237 |access-date=2019-08-09 |url-status=live |archive-url=https://web.archive.org/web/20160305012729/http://www.ellerman.org/wp-content/uploads/2012/12/IntellectualTrespassingBook.pdf |archive-date=2016-03-05}} [https://web.archive.org/web/20150917191423/http://www.ellerman.org/Davids-Stuff/Maths/sp_math.doc] (271 pages) * {{cite web |title=Introduction to Series-Parallel Duality |author-first=David Patterson |author-last=Ellerman |author-link=David Patterson Ellerman |publisher=[[University of California at Riverside]] |date=May 2004 |orig-year=1995-03-21 |citeseerx=10.1.1.90.3666 |url=http://www.ellerman.org/wp-content/uploads/2012/12/Series-Parallel-Duality.CV_.pdf |access-date=2019-08-09 |url-status=live |archive-url=https://web.archive.org/web/20190810011716/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.3666&rep=rep1&type=pdf<!-- https://archive.today/20190810080659/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.3666&rep=rep1&type=pdf --> |archive-date=2019-08-10}} [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.3666&rep=rep1&type=pdf] (24 pages) {{Convex analysis and variational analysis}} [[Category:Convex analysis]] [[Category:Duality theories]] [[Category:Theorems involving convexity]] [[Category:Transforms]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:*
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Convex analysis and variational analysis
(
edit
)
Template:Em
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:Rockafellar Wets Variational Analysis 2009 Springer
(
edit
)
Template:Section link
(
edit
)
Template:Short description
(
edit
)