Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convolution theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Theorem in mathematics}} In [[mathematics]], the '''convolution theorem''' states that under suitable conditions the [[Fourier transform]] of a [[convolution]] of two functions (or [[signal]]s) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., [[time domain]]) equals point-wise multiplication in the other domain (e.g., [[frequency domain]]). Other versions of the convolution theorem are applicable to various [[List of Fourier-related transforms|Fourier-related transforms]]. == Functions of a continuous variable == Consider two functions <math>u(x)</math> and <math>v(x)</math> with [[Fourier transform]]s <math>U</math> and <math>V</math>: :<math>\begin{align} U(f) &\triangleq \mathcal{F}\{u\}(f) = \int_{-\infty}^{\infty}u(x) e^{-i 2 \pi f x} \, dx, \quad f \in \mathbb{R}\\ V(f) &\triangleq \mathcal{F}\{v\}(f) = \int_{-\infty}^{\infty}v(x) e^{-i 2 \pi f x} \, dx, \quad f \in \mathbb{R} \end{align}</math> where <math>\mathcal{F}</math> denotes the '''Fourier transform [[Operator (mathematics)|operator]]'''. The transform may be normalized in other ways, in which case constant scaling factors (typically <math>2\pi</math> or <math>\sqrt{2\pi}</math>) will appear in the convolution theorem below. The convolution of <math>u</math> and <math>v</math> is defined by: :<math>r(x) = \{u*v\}(x) \triangleq \int_{-\infty}^{\infty} u(\tau) v(x-\tau)\, d\tau = \int_{-\infty}^{\infty} u(x-\tau) v(\tau)\, d\tau.</math> In this context the [[asterisk]] denotes convolution, instead of standard multiplication. The [[tensor product]] symbol <math>\otimes</math> is sometimes used instead. The '''convolution theorem''' states that''':'''<ref name=McGillem/><ref name=Weisstein/>{{rp|eq.8}} {{Equation box 1 |indent=:|cellpadding=0|border=0|background colour=white |equation={{NumBlk|| <math>R(f) \triangleq \mathcal{F}\{r\}(f) = U(f) V(f). \quad f \in \mathbb{R}</math> |{{EquationRef|Eq.1a}} }} }} Applying the inverse Fourier transform <math>\mathcal{F}^{-1},</math> produces the corollary''':'''<ref name=Weisstein/>{{rp|eqs.7,10}} {{Equation box 1|title='''Convolution theorem''' |indent=|cellpadding=6|border=|border colour=#0073CF|background colour=#F5FFFA |equation={{NumBlk|:| <math>r(x) = \{u*v\}(x) = \mathcal{F}^{-1}\{U\cdot V\}.</math> |{{EquationRef|Eq.1b}} }} }} The theorem also generally applies to multi-dimensional functions. {{Collapse top|title=Multi-dimensional derivation of Eq.1}} Consider functions <math>u,v</math> in [[Lp space|L<sup>''p''</sup>]]-space <math>L^1(\mathbb{R}^n),</math> with Fourier transforms <math>U,V</math>''':''' :<math> \begin{align} U(f) &\triangleq \mathcal{F}\{u\}(f) = \int_{\mathbb{R}^n} u(x) e^{-i 2 \pi f \cdot x} \, dx, \quad f \in \mathbb{R}^n\\ V(f) &\triangleq \mathcal{F}\{v\}(f) = \int_{\mathbb{R}^n} v(x) e^{-i 2 \pi f \cdot x} \, dx, \end{align} </math> where <math>f\cdot x</math> indicates the [[dot product|inner product]] of '''<math>\mathbb{R}^n</math>:''' <math>f\cdot x = \sum_{j=1}^{n} {f}_j x_j,</math> and <math>dx = \prod_{j=1}^{n} d x_j.</math> The [[convolution]] of <math>u</math> and <math>v</math> is defined by''':''' :<math>r(x) \triangleq \int_{\mathbb{R}^n} u(\tau) v(x-\tau)\, d\tau.</math> Also''':''' :<math>\iint |u(\tau)v(x-\tau)|\,dx\,d\tau=\int \left( |u(\tau)| \int |v(x-\tau)|\,dx \right) \,d\tau = \int |u(\tau)|\,\|v\|_1\,d\tau=\|u\|_1 \|v\|_1.</math> Hence by [[Fubini's theorem]] we have that <math>r\in L^1(\mathbb{R}^n)</math> so its Fourier transform <math>R</math> is defined by the integral formula''':''' :<math> \begin{align} R(f) \triangleq \mathcal{F}\{r\}(f) &= \int_{\mathbb{R}^n} r(x) e^{-i 2 \pi f \cdot x}\, dx\\ &= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} u(\tau) v(x-\tau)\, d\tau\right)\, e^{-i 2 \pi f \cdot x}\, dx. \end{align} </math> Note that <math>|u(\tau)v(x-\tau)e^{-i 2\pi f \cdot x}|=|u(\tau)v(x-\tau)|,</math> Hence by the argument above we may apply Fubini's theorem again (i.e. interchange the order of integration)''':''' :<math> \begin{align} R(f) &= \int_{\mathbb{R}^n} u(\tau) \underbrace{\left(\int_{\mathbb{R}^n} v(x-\tau)\ e^{-i 2 \pi f \cdot x}\,dx\right)}_{V(f)\ e^{-i 2 \pi f \cdot \tau}}\,d\tau\\ &=\underbrace{\left(\int_{\mathbb{R}^n} u(\tau)\ e^{-i 2\pi f \cdot \tau}\,d\tau\right)}_{U(f)}\ V(f). \end{align} </math> {{Collapse bottom}} This theorem also holds for the [[Laplace transform]], the [[two-sided Laplace transform]] and, when suitably modified, for the [[Mellin transform]] and [[Hartley transform]] (see [[Mellin inversion theorem]]). It can be extended to the Fourier transform of [[abstract harmonic analysis]] defined over [[locally compact abelian group]]s. === Periodic convolution (Fourier series coefficients) === Consider <math>P</math>-periodic functions <math>u_{_P}</math> and <math>v_{_P},</math> which can be expressed as [[periodic summation]]s: :<math>u_{_P}(x)\ \triangleq \sum_{m=-\infty}^{\infty} u(x-mP)</math> and <math>v_{_P}(x)\ \triangleq \sum_{m=-\infty}^{\infty} v(x-mP).</math> In practice the non-zero portion of components <math>u</math> and <math>v</math> are often limited to duration <math>P,</math> but nothing in the theorem requires that. The [[Fourier series]] coefficients are: :<math>\begin{align} U[k] &\triangleq \mathcal{F}\{u_{_P}\}[k] = \frac{1}{P} \int_P u_{_P}(x) e^{-i 2\pi k x/P} \, dx, \quad k \in \mathbb{Z}; \quad \quad \scriptstyle \text{integration over any interval of length } P\\ V[k] &\triangleq \mathcal{F}\{v_{_P}\}[k] = \frac{1}{P} \int_P v_{_P}(x) e^{-i 2\pi k x/P} \, dx, \quad k \in \mathbb{Z} \end{align}</math> where <math>\mathcal{F}</math> denotes the '''Fourier series integral'''. * The product: <math>u_{_P}(x)\cdot v_{_P}(x)</math> is also <math>P</math>-periodic, and its Fourier series coefficients are given by the [[Convolution#Discrete convolution|discrete convolution]] of the <math>U</math> and <math>V</math> sequences: :<math>\mathcal{F}\{u_{_P}\cdot v_{_P}\}[k] = \{U*V\}[k].</math> *The convolution: :<math>\begin{align} \{u_{_P} * v\}(x)\ &\triangleq \int_{-\infty}^{\infty} u_{_P}(x-\tau)\cdot v(\tau)\ d\tau\\ &\equiv \int_P u_{_P}(x-\tau)\cdot v_{_P}(\tau)\ d\tau; \quad \quad \scriptstyle \text{integration over any interval of length } P \end{align}</math> is also <math>P</math>-periodic, and is called a '''[[periodic convolution]]'''. {{Collapse top|title=Derivation of periodic convolution}} :<math>\begin{align} \int_{-\infty}^\infty u_{_P}(x - \tau) \cdot v(\tau)\,d\tau &= \sum_{k=-\infty}^\infty \left[\int_{x_o+kP}^{x_o+(k+1)P} u_{_P}(x - \tau) \cdot v(\tau)\ d\tau\right] \quad x_0 \text{ is an arbitrary parameter}\\ &=\sum_{k=-\infty}^\infty \left[\int_{x_o}^{x_o+P} \underbrace{u_{_P}(x - \tau-kP)}_{u_{_P}(x - \tau), \text{ by periodicity}} \cdot v(\tau + kP)\ d\tau\right] \quad \text{substituting } \tau \rightarrow \tau+kP\\ &=\int_{x_o}^{x_o+P} u_{_P}(x - \tau) \cdot \underbrace{\left[\sum_{k=-\infty}^\infty v(\tau + kP)\right]}_{\triangleq \ v_{_P}(\tau)}\ d\tau \end{align}</math> {{Collapse bottom}} The corresponding convolution theorem is''':''' {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>\mathcal{F}\{u_{_P} * v\}[k] =\ P\cdot U[k]\ V[k].</math> |{{EquationRef|Eq.2}} }} }} <!--{{math proof|title=Derivation of Eq.2| proof = --> {{Collapse top|title=Derivation of Eq.2}} :<math>\begin{align} \mathcal{F}\{u_{_P} * v\}[k] &\triangleq \frac{1}{P} \int_P \left(\int_P u_{_P}(\tau)\cdot v_{_P}(x-\tau)\ d\tau\right) e^{-i 2\pi k x/P} \, dx\\ &= \int_P u_{_P}(\tau)\left(\frac{1}{P}\int_P v_{_P}(x-\tau)\ e^{-i 2\pi k x/P} dx\right) \, d\tau\\ &= \int_P u_{_P}(\tau)\ e^{-i 2\pi k \tau/P} \underbrace{\left(\frac{1}{P}\int_P v_{_P}(x-\tau)\ e^{-i 2\pi k (x-\tau)/P} dx\right)}_{V[k], \quad \text{due to periodicity}} \, d\tau\\ &=\underbrace{\left(\int_P\ u_{_P}(\tau)\ e^{-i 2\pi k \tau/P} d\tau\right)}_{P\cdot U[k]}\ V[k]. \end{align}</math> {{Collapse bottom }} == Functions of a discrete variable (sequences) == By a derivation similar to Eq.1, there is an analogous theorem for sequences, such as samples of two continuous functions, where now <math>\mathcal{F}</math> denotes the '''[[discrete-time Fourier transform]]''' (DTFT) operator. Consider two sequences <math>u[n]</math> and <math>v[n]</math> with transforms <math>U</math> and <math>V</math>: :<math>\begin{align} U(f) &\triangleq \mathcal{F}\{u\}(f) = \sum_{n=-\infty}^{\infty} u[n]\cdot e^{-i 2\pi f n}\;, \quad f \in \mathbb{R}, \\ V(f) &\triangleq \mathcal{F}\{v\}(f) = \sum_{n=-\infty}^{\infty} v[n]\cdot e^{-i 2\pi f n}\;, \quad f \in \mathbb{R}. \end{align}</math> The {{slink|Convolution#Discrete convolution|nopage=y}} of <math>u</math> and <math>v</math> is defined by''':''' :<math>r[n] \triangleq (u * v)[n] = \sum_{m=-\infty}^\infty u[m]\cdot v[n - m] = \sum_{m=-\infty}^\infty u[n-m]\cdot v[m].</math> The [[Convolution#Discrete convolution|'''convolution theorem''']] for discrete sequences is''':'''<ref name=Proakis/><ref name=Oppenheim/>{{rp|p.60 (2.169)}} {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>R(f) = \mathcal{F}\{u * v\}(f) =\ U(f) V(f).</math> |{{EquationRef|Eq.3}} }} }} === Periodic convolution === <math>U(f)</math> and <math>V(f),</math> as defined above, are periodic, with a period of 1. Consider <math>N</math>-periodic sequences <math>u_{_N}</math> and <math>v_{_N}</math>''':''' :<math>u_{_N}[n]\ \triangleq \sum_{m=-\infty}^{\infty} u[n-mN]</math> and <math>v_{_N}[n]\ \triangleq \sum_{m=-\infty}^{\infty} v[n-mN], \quad n \in \mathbb{Z}.</math> These functions occur as the result of sampling <math>U</math> and <math>V</math> at intervals of <math>1/N</math> and performing an inverse '''[[discrete Fourier transform]]''' (DFT) on <math>N</math> samples (see {{slink|Discrete-time_Fourier_transform#Sampling_the_DTFT|nopage=y}}). The discrete convolution''':''' :<math>\{u_{_N} * v\}[n]\ \triangleq \sum_{m=-\infty}^{\infty} u_{_N}[m]\cdot v[n-m] \equiv \sum_{m=0}^{N-1} u_{_N}[m]\cdot v_{_N}[n-m]</math> is also <math>N</math>-periodic, and is called a '''[[periodic convolution]]'''. Redefining the <math>\mathcal{F}</math> operator as the <math>N</math>-length DFT, the corresponding theorem is:<ref name="Rabiner" /><ref name="Oppenheim" />{{rp|p. 548}} {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>\mathcal{F}\{u_{_N} * v\}[k] =\ \underbrace{\mathcal{F}\{u_{_N}\}[k]}_{U(k/N)} \cdot \underbrace{\mathcal{F}\{v_{_N}\}[k]}_{V(k/N)}, \quad k \in \mathbb{Z}.</math> |{{EquationRef|Eq.4a}} }} }} And therefore''':''' {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>\{u_{_N} * v\}[n] =\ \mathcal{F}^{-1}\{\mathcal{F}\{u_{_N}\} \cdot \mathcal{F}\{v_{_N}\}\}.</math> |{{EquationRef|Eq.4b}} }} }} Under the right conditions, it is possible for this <math>N</math>-length sequence to contain a distortion-free segment of a <math>u*v</math> convolution. But when the non-zero portion of the <math>u(n)</math> or <math>v(n)</math> sequence is equal or longer than <math>N,</math> some distortion is inevitable. Such is the case when the <math>V(k/N)</math> sequence is obtained by directly sampling the DTFT of the infinitely long {{slink|Hilbert transform|Discrete Hilbert transform|nopage=y}} [[impulse response]].{{efn-ua |1=An example is the [[MATLAB]] function, '''[http://www.mathworks.com/help/toolbox/signal/ref/hilbert.html;jsessionid=67ed4e69e9729363548abed31054 hilbert(u,N)]'''.}} For <math>u</math> and <math>v</math> sequences whose non-zero duration is less than or equal to <math>N,</math> a final simplification is: {{Equation box 1 |title='''[[Circular convolution]]''' |indent=|cellpadding=6 |border= |border colour=#0073CF |background colour=#F5FFFA |equation={{NumBlk|:| <math>\{u_{_N} * v\}[n] =\ \mathcal{F}^{-1}\{\mathcal{F}\{u\} \cdot \mathcal{F}\{v\}\}.</math> |{{EquationRef|Eq.4c}} }} }} This form is often used to efficiently implement numerical convolution by [[computer]]. (see {{slink|Convolution|Fast convolution algorithms|nopage=y}} and {{slink|Circular_convolution|Example|nopage=y}}) As a partial reciprocal, it has been shown <ref>{{cite book |last1=Amiot |first1=Emmanuel |title=Music through Fourier Space |series=Computational Music Science |date=2016 |publisher=Springer |location=Zürich |isbn=978-3-319-45581-5 |page=8 |doi=10.1007/978-3-319-45581-5 |s2cid=6224021 |url=https://link.springer.com/book/10.1007/978-3-319-45581-5 |ref=Theorem 1.11}}</ref> that any linear transform that turns convolution into a product is the DFT (up to a permutation of coefficients). {{Collapse top|title=Derivations of Eq.4}} A time-domain derivation proceeds as follows''':''' :<math> \begin{align} \scriptstyle{\rm DFT}\displaystyle \{u_{_N} * v\}[k] &\triangleq \sum_{n=0}^{N-1} \left(\sum_{m=0}^{N-1} u_{_N}[m]\cdot v_{_N}[n-m]\right) e^{-i 2\pi kn/N}\\ &= \sum_{m=0}^{N-1} u_{_N}[m] \left(\sum_{n=0}^{N-1} v_{_N}[n-m]\cdot e^{-i 2\pi kn/N}\right)\\ &= \sum_{m=0}^{N-1} u_{_N}[m]\cdot e^{-i 2\pi km/N} \underbrace{ \left(\sum_{n=0}^{N-1} v_{_N}[n-m]\cdot e^{-i 2\pi k(n-m)/N}\right)}_{\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\quad \scriptstyle \text{due to periodicity}}\\ &= \underbrace{ \left(\sum_{m=0}^{N-1} u_{_N}[m]\cdot e^{-i 2\pi km/N}\right)}_{\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]} \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right). \end{align} </math> A frequency-domain derivation follows from {{slink|DTFT|Periodic data|nopage=y}}, which indicates that the DTFTs can be written as''':''' :<math> \mathcal{F}\{u_{_N} * v\}(f) = \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle \{u_{_N} * v\}[k]\right)\cdot \delta\left(f-k/N\right). \quad \scriptstyle \mathsf{(Eq.5a)} </math> :<math> \mathcal{F}\{u_{_N}\}(f) = \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot \delta\left(f-k/N\right). </math> The product with <math>V(f)</math> is thereby reduced to a discrete-frequency function''':''' :<math> \begin{align} \mathcal{F}\{u_{_N} * v\}(f) &= G_{_N}(f) V(f) \\ &= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot V(f)\cdot \delta\left(f-k/N\right)\\ &= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot V(k/N)\cdot \delta\left(f-k/N\right)\\ &= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right) \cdot \delta\left(f-k/N\right), \quad \scriptstyle \mathsf{(Eq.5b)} \end{align} </math> where the equivalence of <math>V(k/N)</math> and <math>\left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right)</math> follows from {{slink|DTFT|Sampling the DTFT|nopage=y}}. Therefore, the equivalence of (5a) and (5b) requires: :<math>\scriptstyle{\rm DFT} \displaystyle {\{u_{_N} * v\}[k]} = \left(\scriptstyle{\rm DFT} \displaystyle\{u_{_N}\}[k]\right)\cdot \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right).</math> <br>We can also verify the inverse DTFT of (5b)''':''' :<math> \begin{align} (u_{_N} * v)[n] & = \int_{0}^{1} \left(\frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\cdot \delta\left(f-k/N\right)\right)\cdot e^{i 2 \pi f n} df \\ & = \frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\cdot \underbrace{\left(\int_{0}^{1} \delta\left(f-k/N\right)\cdot e^{i 2 \pi f n} df\right)}_{\text{0, for} \ k\ \notin\ [0,\ N)} \\ & = \frac{1}{N} \sum_{k=0}^{N-1} \bigg(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\bigg)\cdot e^{i 2 \pi \frac{n}{N} k}\\ &=\ \scriptstyle{\rm DFT}^{-1} \displaystyle \bigg( \scriptstyle{\rm DFT}\displaystyle \{u_{_N}\}\cdot \scriptstyle{\rm DFT}\displaystyle \{v_{_N}\} \bigg). \end{align} </math> {{Collapse bottom}} ==Convolution theorem for inverse Fourier transform== There is also a convolution theorem for the inverse Fourier transform: Here, "<math>\cdot</math>" represents the [[Hadamard product (matrices)|Hadamard product]], and "<math>*</math>" represents a convolution between the two matrices. :<math>\begin{align} &\mathcal{F}\{u*v\} = \mathcal{F}\{u\} \cdot \mathcal{F}\{v\}\\ &\mathcal{F}\{u \cdot v\}= \mathcal{F}\{u\}*\mathcal{F}\{v\} \end{align}</math> so that :<math>\begin{align} &u*v= \mathcal{F}^{-1}\left\{\mathcal{F}\{u\}\cdot\mathcal{F}\{v\}\right\}\\ &u \cdot v= \mathcal{F}^{-1}\left\{\mathcal{F}\{u\}*\mathcal{F}\{v\}\right\} \end{align}</math> ==Convolution theorem for tempered distributions== The convolution theorem extends to [[Distribution (mathematics)#Convolution versus multiplication|tempered distributions]]. Here, <math>v</math> is an arbitrary tempered distribution: :<math>\begin{align} &\mathcal{F}\{u*v\} = \mathcal{F}\{u\} \cdot \mathcal{F}\{v\}\\ &\mathcal{F}\{\alpha \cdot v\}= \mathcal{F}\{\alpha\}*\mathcal{F}\{v\}. \end{align}</math> But <math>u = F\{\alpha\}</math> must be "rapidly decreasing" towards <math>-\infty</math> and <math>+\infty</math> in order to guarantee the existence of both, convolution and multiplication product. Equivalently, if <math>\alpha = F^{-1}\{u\}</math> is a smooth "slowly growing" ordinary function, it guarantees the existence of both, multiplication and convolution product.<ref>{{cite book | last=Horváth | first=John | author-link=John Horvath (mathematician) | title=Topological Vector Spaces and Distributions | publisher=Addison-Wesley Publishing Company | location=Reading, MA | year=1966}}</ref><ref>{{cite book | last=Barros-Neto | first=José | title=An Introduction to the Theory of Distributions | publisher=Dekker | location=New York, NY | year=1973}}</ref><ref>{{cite book | last=Petersen | first=Bent E. | title=Introduction to the Fourier Transform and Pseudo-Differential Operators | publisher=Pitman Publishing | location=Boston, MA | year=1983}}</ref> In particular, every compactly supported tempered distribution, such as the [[Dirac delta function|Dirac delta]], is "rapidly decreasing". Equivalently, [[Bandlimiting|bandlimited functions]], such as the function that is constantly <math>1</math> are smooth "slowly growing" ordinary functions. If, for example, <math>v\equiv\operatorname{\text{Ш}}</math> is the [[Dirac comb]] both equations yield the [[Poisson summation formula]] and if, furthermore, <math>u\equiv\delta</math> is the Dirac delta then <math>\alpha \equiv 1</math> is constantly one and these equations yield the [[Dirac comb#Dirac-comb identity|Dirac comb identity]]. == See also == * [[Moment-generating function]] of a [[random variable]] ==Notes== {{notelist-ua}} == References == {{reflist|1|refs= <ref name=McGillem> {{cite book |last1=McGillem |first1=Clare D. |last2=Cooper |first2=George R. |title=Continuous and Discrete Signal and System Analysis |page=118 (3–102) |publisher=Holt, Rinehart and Winston |edition=2 |date=1984 |isbn=0-03-061703-0}} </ref> <ref name=Proakis> {{Citation |last1=Proakis |first1=John G. |last2=Manolakis |first2=Dimitri G. |title=Digital Signal Processing: Principles, Algorithms and Applications |page=297 |place=New Jersey |publisher=Prentice-Hall International |year=1996 |edition =3 |language=en |id=sAcfAQAAIAAJ |isbn=9780133942897 |bibcode=1996dspp.book.....P |url-access=registration |url=https://archive.org/details/digitalsignalpro00proa}} </ref> <ref name=Rabiner> {{cite book |last1=Rabiner |first1=Lawrence R. |author1-link=Lawrence Rabiner |last2=Gold |first2=Bernard |date=1975 |title=Theory and application of digital signal processing |page=59 (2.163) |location=Englewood Cliffs, NJ |publisher=Prentice-Hall, Inc. |isbn=978-0139141010 |url-access=registration |url=https://archive.org/details/theoryapplicatio00rabi}} </ref> <ref name=Weisstein> {{cite web |last1=Weisstein |first1=Eric W. |title=Convolution Theorem |url=https://mathworld.wolfram.com/ConvolutionTheorem.html |website=From MathWorld--A Wolfram Web Resource |access-date=8 February 2021}} </ref> <ref name=Oppenheim> {{cite book |last1=Oppenheim |first1=Alan V. |author-link=Alan V. Oppenheim |last2=Schafer |first2=Ronald W. |author2-link=Ronald W. Schafer |last3=Buck |first3=John R. |title=Discrete-time signal processing |year=1999 |publisher=Prentice Hall |location=Upper Saddle River, N.J. |isbn=0-13-754920-2 |edition=2nd |url-access=registration |url=https://archive.org/details/discretetimesign00alan }} </ref> }} {{refbegin}} == Further reading == *{{citation |first=Yitzhak |last=Katznelson |title=An introduction to Harmonic Analysis|year=1976|publisher=Dover |isbn=0-486-63331-4}} *{{citation |first1=Bing |last1=Li |first2=G. Jogesh |last2=Babu |chapter=Convolution Theorem and Asymptotic Efficiency |title=A Graduate Course on Statistical Inference |location=New York |publisher=Springer |year=2019 |isbn=978-1-4939-9759-6 |pages=295–327 }} *{{citation |last=Crutchfield |first=Steve |url=http://www.jhu.edu/signals/convolve/index.html |title=The Joy of Convolution |work=Johns Hopkins University |date=October 9, 2010 |access-date=November 19, 2010}} {{refend}} == Additional resources == For a visual representation of the use of the convolution theorem in [[signal processing]], see: *[[Johns Hopkins University]]'s [[Java (software platform)|Java]]-aided simulation: http://www.jhu.edu/signals/convolve/index.html [[Category:Theorems in Fourier analysis]] [[Category:Articles containing proofs]] [[de:Faltung (Mathematik)#Faltungstheorem 2]] [[fr:Produit de convolution]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Collapse bottom
(
edit
)
Template:Collapse top
(
edit
)
Template:Efn-ua
(
edit
)
Template:Equation box 1
(
edit
)
Template:Notelist-ua
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)