Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Copper electroplating
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Process of electroplating copper}} [[Image:Polished copper on aluminum.jpg|thumb|right|200px|Copper plating on [[aluminium]]]] '''Copper electroplating''' is the process of [[electroplating]] a layer of [[copper]] onto the surface of a metal object. Copper is used both as a standalone coating and as an undercoat onto which other metals are subsequently plated.<ref>{{cite web |title=Copper Plating |url=http://spectrummetalfinishing.com/metal-finishes/copper-plating/ |website=Spectrum Metal Finishing, Inc |access-date=July 20, 2022}}</ref> The copper layer can be decorative, provide corrosion resistance, increase electrical and thermal conductivity, or improve the adhesion of additional deposits to the substrate.<ref name="PFCu">{{cite web |last1=Snyder |first1=Donald |title=Choosing and Troubleshooting Copper Electroplating Processes |url=https://www.pfonline.com/articles/choosing-and-troubleshooting-copper-electroplating-processes |website=[[Products Finishing]] |access-date=July 20, 2022}}</ref><ref>{{cite web |title=Industrial Copper Plating |url=https://www.electro-coatings.com/copper-plating.php |website=Electro-Coatings |access-date=July 20, 2022}}</ref> ==Overview== Copper electroplating takes place in an [[electrolytic cell]] using [[electrolysis]]. As with all plating processes, the part to be plated must be cleaned before depositing metal to remove soils, grease, oxides, and defects.<ref name="ASTM B322-99">{{citation | title = ASTM B322-99 Standard| url=https://www.astm.org/b0322-99.html}}</ref><ref name="Flott">{{cite journal |last1=Flott |first1=Leslie W. |title=Metal finishing: an overview |journal=Metal Finishing |date=January 1, 2000 |volume=98 |issue=1 |pages=20–34 |doi=10.1016/S0026-0576(00)80308-6 |url=https://doi.org/10.1016/S0026-0576(00)80308-6 |access-date=July 21, 2022 |language=en |issn=0026-0576|url-access=subscription }}</ref> After precleaning, the part is immersed in the cell's [[aqueous]] [[electrolyte]] solution and functions as the [[cathode]]. A copper [[anode]] is also immersed in the solution. During plating, a [[direct current|direct electric current]] is applied to the cell which causes the copper in the anode to dissolve into the electrolyte through [[oxidation]], losing [[electron]]s and [[ionization|ionizing]] into copper [[cation]]s. The copper cations form a [[coordination complex]] with salts present in the electrolyte, after which they are transported [[Electric current#Conventions|from the anode to the cathode]]. At the cathode, the copper ions are [[Reduction (chemistry)|reduced]] to metallic copper by gaining electrons. This causes a thin, solid, metallic copper film to deposit onto the surface of the part. The anodes can be either simple copper slabs or titanium or steel baskets filled with copper nuggets or balls.<ref name="Barauskas" /> The anodes may be placed in anode bags, which are typically made of polypropylene or another fabric and are used to contain insoluble particles that flake off the anode and prevent them from contaminating the plating bath.<ref name="PFCu" /><ref>{{cite web |title=ANODE BAGS |url=https://www.anodeproducts.com/products/anode-bags/ |website=Anode Products Company, Inc. |access-date=July 23, 2022}}</ref> Copper electroplating baths can be used to plate either a ''[[Electroplating#Strike|strike]]'' or ''flash'' coating, which is a thin highly-adherent initial layer that is plated with additional layers of metal and that serves to improve adhesion of the subsequent layers to the underlying substrate, or a thicker coating of copper that may serve as the finish layer or as a standalone coating.<ref name="Flott" /> ==Types of plating chemistries== There are a variety of different electrolyte chemistries that can be used for copper electroplating, but most can be broadly characterized into five general categories based on the complexing agent:<ref name="PFCu" /><ref name="Barauskas">{{cite journal |last1=Barauskas |first1=Romualdas "Ron" |title=Copper plating |journal=Metal Finishing |date=January 1, 2000 |volume=98 |issue=1 |pages=234–247 |doi=10.1016/S0026-0576(00)80330-X |url=https://doi.org/10.1016/S0026-0576(00)80330-X |access-date=July 21, 2022 |language=en |issn=0026-0576|url-access=subscription }}</ref> # Alkaline [[cyanide]] # Alkaline non-cyanide # Acid [[sulfuric acid|sulfate]] # Acid [[fluoroborate]] # [[Pyrophosphate]] === Alkaline cyanide === Alkaline cyanide baths have historically been one of the most commonly-used plating chemistries for copper electrodeposition.<ref name="Flott" /><ref name="Bandes Review">{{cite journal |last1=Bandes |first1=Herbert |title=The Electrodeposition of Copper |journal=Transactions of the Electrochemical Society |date=1945 |volume=88 |issue=1 |pages=263–278 |doi=10.1149/1.3071688 |url=https://iopscience.iop.org/article/10.1149/1.3071688/meta |access-date=April 9, 2022|doi-access=free }}</ref> Cyanide copper baths typically provide high covering and [[throwing power]], allowing uniform and complete coverage of the substrate, but often plate at lower [[current efficiency]].<ref name="PFCu" /> They produce a metal finish favored for its [[Diffusion barrier|diffusion blocking]] character. Diffusion blocking is used to improve the long term adherence of different metals, e.g. chromium and steel. It is also used to prevent the second material from diffusing into the substrate. Cyanide baths contain [[cuprous cyanide]] as the source of copper(I) ions, [[sodium cyanide|sodium]] or [[potassium cyanide]] as a source of free cyanide that complexes with cuprous cyanide to render it soluble, and [[sodium hydroxide|sodium]] or [[potassium hydroxide]] for increased conductivity and pH control.<ref name="JackHorner">{{cite journal |last1=Horner |first1=Jack |title=Cyanide Copper Plating |journal=Plating & Surface Finishing |url=https://www.nmfrc.org/pdf/p1199l.pdf |access-date=July 24, 2022}}</ref> Baths may also contain [[Rochelle salt]]s and [[sodium carbonate|sodium]] or [[potassium carbonate]], as well as a variety of proprietary additives.<ref name="PFCu" /> Cyanide copper baths can be used as low-efficiency strike-only baths, medium-efficiency strike-plate baths, and high efficiency plating baths.<ref name="Barauskas" /> ==== Bath composition ==== {| class="wikitable" |- ! rowspan="2" | Chemical Name ! rowspan="2" | Formula ! colspan="2" | Strike<ref name="Barauskas" /> ! colspan="2" | Strike-plate<ref name="Barauskas" /> ! colspan="2" | High-efficiency plate<ref name="Barauskas" /> |- | Sodium || Potassium || Sodium || Potassium || Sodium || Potassium |- | [[Copper(I) cyanide]]|| CuCN || 30 g/L || 30 g/L || 42 g/L || 42 g/L || 75 g/L || 60 g/L |- | Sodium or [[potassium cyanide]]|| NaCN or KCN || 48 g/L || 58.5 g/L || 51.9 g/L || 66.6 g/L || 97.5 g/L || 102 g/L |- | Sodium or [[potassium hydroxide]]|| NaOH or KOH || 3.75–7.5 g/L || 3.75–7.5 g/L || colspan="2"| Control to pH 10.2–10.5 || 15 g/L || 15 g/L |- | [[Rochelle salt]]s || KNaC<sub>4</sub>H<sub>4</sub>O<sub>6</sub>·4H<sub>2</sub>O || 30 g/L || 30 g/L || 60 g/L || 60 g/L || 45 g/L || 45 g/L |- | [[Sodium carbonate|Sodium]] or [[potassium carbonate]]|| Na<sub>2</sub>CO<sub>3</sub> or K<sub>2</sub>CO<sub>3</sub> || 15 g/L || 15 g/L || 30 g/L || 30 g/L || 15 g/L || 15 g/L |} ==== Operating conditions ==== * Temperature: 24-66 °C (strike); 40-55 °C (strike-plate); 60-71 °C (high-efficiency)<ref name="Barauskas" /> * Cathode current density: 0.5-4.0 A/dm<sup>2</sup> (strike); 1.0-1.5 A/dm<sup>2</sup> (strike-plate); 8.6 A/dm<sup>2</sup> (high-efficiency)<ref name="Barauskas" /> * Current efficiency: 30-60% (strike); 30-50% (strike-plate); 90-99% (high-efficiency);<ref name="Barauskas" /> * pH: >11.0<ref name="PFCu" /> ==== Toxicity ==== Commercial platers typically use a copper cyanide solution, which retains a high concentration of copper. However, the presence of free cyanide in the baths makes them dangerous due to the [[Cyanide poisoning|highly toxic nature of cyanide]]. This creates both health hazards as well as issues with waste disposal.<ref name="Barauskas" /> === Alkaline non-cyanide === Due to safety concerns surrounding the use of cyanide-based plating chemistry, alkaline copper plating baths that do not contain cyanide have been developed. However, they generally see only limited use compared with the more common cyanide-based alkaline chemistry.<ref name="PFCu" /> === Acid sulfate === Acid copper sulfate electrolytes are relatively simple solutions of copper sulfate and sulfuric acid that are cheaper and easier to maintain and control than cyanide copper electrolytes.<ref name="PFCu" /> Compared to cyanide baths, they provide higher current efficiency and allow for higher current density and thus faster plating rates, but they usually have less throwing power, although high-throw variations exist.<ref name="PFCu" /> Additionally, they cannot be used to plate directly onto [[Noble metal|less-noble]] metals such as steel or zinc without first applying a cyanide-based strike or other barrier layer, otherwise the acid in the bath will cause an [[immersion coating]] to form that will compromise adhesion.<ref name="Barauskas" /> Due to this phenomenon as well as the lower throwing power, acid sulfate baths are not usually used as strike baths.<ref name="PFCu" /> Along with alkaline cyanide, acid copper baths are among the most commonly-used copper plating electrolytes,<ref>{{cite web |title=ACIDIC COPPER PLATING |url=https://www.consonnisrl.it/en/electroplating-treatments/acidic-copper-plating/ |website=Consonni S.R.L. |access-date=July 26, 2022}}</ref> with industrial applications that include decorative plating, [[electroforming]], [[Photogravure|rotogravure]], and [[printed circuit board]] and semiconductor fabrication.<ref name="Barauskas" /><ref>{{cite web |title=Acid Copper Plating Tank |url=https://www.thinktink.com/stack/volumes/voliii/equipment/copplate/coptank.htm |website=Think & Tinker, Ltd. |access-date=July 26, 2022}}</ref> Acid sulfate baths contain [[cupric sulfate]] as the source of copper(II) ions; [[sulfuric acid]] to increase bath conductivity, ensure copper salt solubility, decrease anode and cathode polarization, and increase throwing power; and a source of [[chloride]] ions such as [[hydrochloric acid]] or [[sodium chloride]], which helps reduce anode polarization and prevents striated deposits from forming.<ref name="Barauskas" /> Most baths also contain a variety of organic additives to help refine the grain structure, improve ductility, and brighten the deposit.<ref name="T&T PTH">{{cite web |title=Acid Copper Through-hole Plating |url=https://www.thinktink.com/stack/volumes/volvi/copplate.htm#organic |website=Think & Tinker, Ltd. |access-date=July 26, 2022}}</ref> Variations of the acid copper electrolyte include general-purpose baths, high-throw baths, and high-speed baths. The high-throw and high-speed baths are used when greater throwing power and faster plating rates are required, including for printed circuit board fabrication where high throw is required to plate the low-current-density areas in the through holes.<ref name="PFCu" /> ==== Bath composition ==== {| class="wikitable" |- ! rowspan="2" | Chemical Name ! rowspan="2" | Formula ! colspan="3" | Bath concentration<ref name="PFCu" /> |- | General-purpose<ref name="PFCu" /> || High-throw<ref name="PFCu" /> || High-speed<ref name="PFCu" /> |- | [[Copper(II) sulfate]]|| CuSO<sub>4</sub> || 190–250 g/L || 60–90 g/L || 80–135 g/L |- | [[Sulfuric acid]]|| H<sub>2</sub>SO<sub>4</sub> || 45–90 g/L || 150–225 g/L || 185–260 g/L |- | [[Chloride ion]]|| Cl<sup>−</sup> || 20–150 ppm || 30–80 ppm || 40–80 ppm |- | Additives || ''Varies'' || colspan="3" | ''Varies'' |} ==== Operating conditions ==== * Temperature: Usually ambient,<ref name="Barauskas" /> although some baths may operate as high as 43 °C<ref name="PFCu" /> * Cathode current density: 2–20 A/dm<sup>2</sup> (general purpose); 1.5–5 A/dm<sup>2</sup> (high throw); 5–20 A/dm<sup>2</sup> (high speed)<ref name="PFCu" /> * Current efficiency: 100%<ref name="Barauskas" /> ==== Additives ==== Various common and proprietary additives have been developed for acid copper electrolytes to help improve throwing and leveling power, brighten the finish, control hardness and ductility, and impart other desired properties to the deposit. Historical formulations dating to the mid-20th century often used [[thiourea]] and molasses, while other formulations used various gums, carbohydrates, and [[sulfonic acid]]s.<ref name="Passal">{{cite journal |last1=Passal |first1=Frank |title=A look back in plating & surface finishing: Copper plating (1909-1959) |journal=Plating |date=1959 |volume=46 |issue=6 |page=628 |url=https://www.nmfrc.org/pdf/psf2006/100638.pdf}}</ref><ref name="Bandes Review" /> For semiconductor and printed circuit board applications, acid copper baths use additives that facilitate plating in high-aspect-ratio [[Via (electronics)|vias]] and through holes. Such additives can be grouped into three categories:<ref name="Hsu Taguchi via fill">{{cite journal |last1=Hsu |first1=Chia-Fu |last2=Dow |first2=Wei-Ping |last3=Chang |first3=Hou-Chien |last4=Chiu |first4=Wen-Yu |title=Optimization of the Copper Plating Process Using the Taguchi Experimental Design Method: I. Microvia Filling by Copper Plating Using Dual Levelers |journal=Journal of the Electrochemical Society |date=2015 |volume=162 |issue=10 |pages=D525–D530 |doi=10.1149/2.0531510jes|s2cid=98052573 |doi-access=free }}</ref> * Suppressors (also known as inhibitors or carriers) (typically polyethers such as [[polyethylene glycol]] or [[polypropylene glycol]]) * Accelerators (also known as brighteners) (typically thiols or disulfides such as [[3-Mercapto-1-propanesulfonic acid]] or [[bis-(3-sodium sulfopropyl) disulfide]]) * Levelers (examples include dyes such as [[Janus Green B]], [[Alcian Blue]], and Diazine Black) Without these additives, copper will preferentially deposit on the surface near the top of the vias instead of inside the vias due to the lower local current density inside the vias, leading to top-down via filling and undesirable voids. The suppressor inhibits plating near the top of the via and the surface, while the brightener accelerates plating near the bottom of the via. The leveler helps prevent buildup at the via opening and creates a smoother surface finish.<ref name="Hsu Taguchi via fill" /><ref>{{cite web |title=Copper Electroplating: How It Works and Its Common Applications Copper Electroplating: How It Works and Its Common Applications |url=https://www.rapiddirect.com/blog/copper-electroplating/ |website=RapidDirect.com |date=26 April 2022 |access-date=May 12, 2023}}</ref> === Acid fluoroborate === Copper fluoroborate baths are similar to acid sulfate baths, but they use fluoroborate as the anion rather than sulfate.<ref name="Barauskas" /> Copper fluoroborate is much more soluble than copper sulfate, which allows one to dissolve larger quantities of copper salt into the bath, enabling much higher current densities than what is possible in copper sulfate baths. Their main use is for high-speed plating where high current densities are required. Drawbacks to the fluoroborate chemistry include lower throwing power than acid sulfate baths, higher cost to operate, and greater safety hazards and waste treatment concerns.<ref name="PFCu" /> Acid fluoroborate baths contain [[Copper(II) tetrafluoroborate|cupric tetrafluoroborate]] and [[fluoroboric acid]]. [[Boric acid]] is typically added to the bath to prevent [[hydrolysis]] of the fluoroborate ions, which generates free [[fluoride]] in the bath. Unlike acid sulfate baths, fluoroborate baths usually do not contain organic additives.<ref name="Barauskas" /> ==== Bath composition ==== {| class="wikitable" |- ! rowspan="2" | Chemical Name ! rowspan="2" | Formula ! colspan="3" | Bath concentration<ref name="Barauskas" /> |- | High concentration || Low concentration |- | [[Copper(II) tetrafluoroborate]]|| Cu(BF<sub>4</sub>)<sub>2</sub> || 459 g/L || 225 g/L |- | [[Fluoroboric acid]]|| HBF<sub>4</sub> || 40.5 g/L || 15 g/L |} ==== Operating conditions ==== * Temperature: 18-66 °C<ref name="Barauskas" /> * Cathode current density: 13-38 A/dm<sup>2</sup> (high concentration); 8-13 A/dm<sup>2</sup> (low concentration)<ref name="Barauskas" /> * pH: 0.2-0.6 (high concentration); 1.0-1.7 (low concentration)<ref name="Barauskas" /> === Pyrophosphate === Pyrophosphate copper plating baths possess gentler chemistry compared to the toxic alkaline cyanide baths and the corrosive acid copper baths, operating at mildly alkaline pH and utilizing relatively non-toxic pyrophosphate compounds. While pyrophosphate electrolytes are easier to waste treat than alkaline cyanide and acid plating baths, they are more difficult to maintain and control. Pyrophosphate baths offer high throwing power and produce bright, ductile deposits, making them particularly useful for printed circuit board fabrication where high throw is required for plating high-aspect-ratio through holes.<ref name="PFCu" /><ref name="Hi-Tech">{{cite web |title=Copper Plating For Excellent Electrical & Thermal Conductivity & Adhesion |url=https://www.hitechplatingtinning.com/copper-plating |website=Hi-Tech Plating & The Tinning Company |access-date=July 27, 2022}}</ref> Pyrophosphate baths contain cupric pyrophosphate as a source of copper(II) ions, potassium pyrophosphate as a source of free [[pyrophosphate]] that increases bath conductivity and helps with anode dissolution, [[ammonia]] for increased anode dissolution and deposit grain refinement, and a source of [[nitrate]] ions such as [[potassium nitrate|potassium]] or [[ammonium nitrate]] to decrease cathode polarization and increase the maximum allowed current density. When the bath is made up, the copper pyrophosphate and potassium pyrophosphate react to form a complex, [K<sub>6</sub>Cu(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>], which dissociates to form the Cu(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub><sup>6−</sup> anion from which copper deposits. Variations of the pyrophosphate electrolyte include general-purpose baths, strike baths, and printed circuit baths. Printed circuit baths typically contain organic additives to improve ductility and throwing power.<ref name="PFCu" /><ref name="Barauskas" /> In pyrophosphate baths, [[orthophosphate]] ions are formed from the hydrolysis of pyrophosphate and tend to build up in the electrolyte over time, which presents maintenance challenges. Orthophosphate ions decrease bath throwing power and deposit ductility at concentrations above 40–60 g/L, and they lead to lower solution conductivity, banded deposits, and lower bright current density range at concentrations beyond 100 g/L. Orthophosphate is removed from the bath by either doing partial bails and dilutions or by completely dumping and remaking the bath.<ref name="Barauskas" /> ==Current control== {{More citations needed|section|date=August 2022}} It is important to control the current to produce the smoothest copper surface possible. With a higher current, hydrogen bubbles will form on the item to be plated, leaving surface imperfections. Often various other chemicals are added to improve plating uniformity and brightness. These additives can be anything from dish soap to proprietary compounds. Without some form of additive, it is almost impossible to obtain a smooth plated surface. The surface formed always needs to be polished to achieve a shine. As formed it has a matte luster. == Applications == [[File:PCBs hanging in electroplating machine.jpg|thumb|PCBs being fabricated in an industrial copper pattern plating line]] Excluding the continuous strip plating industry, copper is the second most commonly-plated metal after nickel.<ref name="Barauskas" /> Copper electroplating offers a number of advantages over other plating processes, including low metal cost, high-conductivity and high-ductility bright finish, and high plating efficiency. The process has a variety of both decorative and engineering applications. === Decorative applications === Decorative copper electroplating takes advantage of the high levelling power of copper bath formulations that produce bright deposits, the ability of copper to cover defects in the base metal, and the softness of copper that makes it easy to buff and polish for a glossy finish. While copper may be used as the final decorative surface layer, it is usually subsequently plated with other metals that are more resistant to wear or tarnish such as chromium, nickel, or gold; in this case, the brightness of the copper undercoat enhances the appearance of the subsequent finish layer.<ref name="Flott" /> Products that utilize decorative copper plating include automotive trim, furniture, door and cabinet handles, light fixtures, kitchen utensils, other household goods, and apparel.<ref name="JackHorner" /><ref>{{cite web |title=Copper Plating Processes for Decorative Applications |url=https://www.technic.com/applications/decorative/plating-chemistry/copper-decorative-plating-chemistry |website=Technic |access-date=July 28, 2022}}</ref> Copper plating is also used for [[Mint (facility)|minting currency]].<ref>{{cite web |title=What's a Penny Made Of? |url=https://www.livescience.com/32401-whats-a-penny-made-of.html |website=[[Live Science]] |date=21 June 2016 |access-date=July 28, 2022}}</ref><ref>{{Cite web|url=https://www.royalmint.com/discover/uk-coins/coin-design-and-specifications/one-penny-coin/|title=One Penny Coin | website=Royal Mint|access-date=July 28, 2022}}</ref> === Engineering applications === Copper electroplating sees widespread usage in the manufacture of electrical and electronic devices, owing to copper's high electrical conductivity – it is the second-most electrically conductive metal after silver.<ref name="CRC">{{cite book|author = Hammond, C.R.|title = The Elements, in Handbook of Chemistry and Physics|edition = 81st|publisher = CRC press|isbn = 978-0-8493-0485-9|date = 2004|url = https://archive.org/details/crchandbookofche81lide}}</ref> Copper is electroplated onto [[printed circuit board]]s to add metal to the [[Via (electronics)|through holes]] and fabricate the board's conductive circuit traces. This is done either through a subtractive process where copper is plated as a blanket unpatterned layer that is subsequently etched with a patterned mask to form the desired circuitry (panel plating), or through an additive or semi-additive process where a patterned mask that exposes the desired circuitry is applied to the board followed by copper plating onto the unmasked circuit areas (pattern plating).<ref name="T&T PTH" /> The [[semiconductor]] industry uses the damascene process to pattern-plate copper into vias and trenches of [[copper interconnects|interconnects]] for metallization.<ref name="Carpio 2019">{{cite journal |last1=Carpio |first1=R. |last2=Jaworski |first2=A. |title=Review—Management of Copper Damascene Plating |journal=Journal of the Electrochemical Society |date=2019 |volume=166 |issue=1 |pages=D3072–D3096 |doi=10.1149/2.0101901jes|bibcode=2019JElS..166D3072C |s2cid=106292271 }}</ref> Copper is also used to plate steel wire for electrical cabling applications.<ref name="AllenHamilton">{{cite journal |last1=Hamilton Jr. |first1=Allen C. |title=Acid Sulfate & Pyrophosphate Copper Plating |journal=Plating & Surface Finishing |url=https://www.nmfrc.org/pdf/p1199p.pdf |access-date=July 24, 2022}}</ref> As a soft metal, copper is also malleable and so has the inherent flexibility to maintain adhesion even if a substrate is subject to being bent and manipulated post plating. When electroplated, copper provides a smooth and even coverage which therefore provides an excellent base for additional coating or plating processes. Corrosion resistance is another advantage to copper. Although copper is not as effective at resisting corrosion as nickel and so is commonly used as a base layer for nickel if enhanced corrosion protection is needed; typically the case for materials that are required to work in marine and subsea environments. Lastly, copper has anti-bacterial properties and so is used in some medical applications.<ref>{{Cite web | url=http://www.surfacetechnology.co.uk/why-use-copper-plating/ |title = Why use copper plating? The benefits of copper plating|date = 2018-02-22}}</ref> == See also == *[[Copper-clad aluminium wire]] *[[Electroless copper plating]] *[[Electroplating]] ==References== {{reflist}} ==External links== * {{YouTube|jL4ySdGh6t0|Real plating on PTH treated Electroless copper plating }} (responsibly) {{Authority control}} {{DEFAULTSORT:Copper Electroplating}} [[Category:Copper|Electroplating]] [[Category:Metal plating]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:More citations needed
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:YouTube
(
edit
)