Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Correspondence theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Theorem in group theory}} In [[group theory]], the '''correspondence theorem'''<ref name="Robinson2003"> {{cite book |author=Derek John Scott Robinson |title=An Introduction to Abstract Algebra|url=https://archive.org/details/introductiontoab00robi_926 |url-access=limited |year=2003 |publisher=Walter de Gruyter |isbn=978-3-11-017544-8 |page=[https://archive.org/details/introductiontoab00robi_926/page/n73 64] }}</ref><ref name="Humphreys1996"> {{cite book |author=J. F. Humphreys |title=A Course in Group Theory |url=https://archive.org/details/coursegrouptheor00hump |url-access=limited |year=1996 |publisher=Oxford University Press |isbn=978-0-19-853459-4 |page=[https://archive.org/details/coursegrouptheor00hump/page/n77 65] }}</ref><ref name="Rose2009"> {{cite book |author=H.E. Rose |title=A Course on Finite Groups|url=https://archive.org/details/courseonfinitegr00rose_817 |url-access=limited |year=2009 |publisher=Springer |isbn=978-1-84882-889-6 |page=[https://archive.org/details/courseonfinitegr00rose_817/page/n89 78] }}</ref><ref name="AlperinBell1995"> {{cite book |author1=J.L. Alperin |author2=Rowen B. Bell |title=Groups and Representations |url=https://archive.org/details/groupsrepresenta00alpe_213 |url-access=limited |year=1995 |publisher=Springer |isbn=978-1-4612-0799-3 |page=[https://archive.org/details/groupsrepresenta00alpe_213/page/n65 11] }}</ref><ref name="Isaacs1994">{{cite book |author=I. Martin Isaacs |title=Algebra: A Graduate Course |url=https://archive.org/details/algebragraduatec00isaa |url-access=limited |year=1994 |publisher=American Mathematical Soc. |isbn=978-0-8218-4799-2 |page=[https://archive.org/details/algebragraduatec00isaa/page/n47 35] }}</ref><ref name="Rotman1995"> {{cite book |author=Joseph Rotman |title=An Introduction to the Theory of Groups |url=https://archive.org/details/introductiontoth00rotm_373 |url-access=limited |year=1995 |publisher=Springer |isbn=978-1-4612-4176-8 |pages=[https://archive.org/details/introductiontoth00rotm_373/page/n57 37]β38 |edition=4th }}</ref><ref name="Nicholson2012"> {{cite book |author=W. Keith Nicholson |title=Introduction to Abstract Algebra |year=2012 |publisher=John Wiley & Sons |isbn=978-1-118-31173-8 |page=352 |edition=4th }}</ref><ref name="Roman2011"> {{cite book |author=Steven Roman |title=Fundamentals of Group Theory: An Advanced Approach |year=2011 |publisher=Springer Science & Business Media |isbn=978-0-8176-8301-6 |pages=113β115 }}</ref> (also the '''lattice theorem''',<ref>W.R. Scott: ''Group Theory'', Prentice Hall, 1964, p. 27.</ref> and [[isomorphism theorems#Note on numbers and names|variously and ambiguously the '''third''' and '''fourth isomorphism theorem''']]<ref name="Rotman1995"/><ref name="HodgeSchlicker2013"> {{cite book |author1=Jonathan K. Hodge |author2=Steven Schlicker |author3=Ted Sundstrom |title=Abstract Algebra: An Inquiry Based Approach |year=2013 |publisher=CRC Press |isbn=978-1-4665-6708-5 |page=425 }}</ref>) states that if <math>N</math> is a [[normal subgroup]] of a [[group (mathematics)|group]] <math>G</math>, then there exists a [[bijection]] from the set of all [[subgroups]] <math>A</math> of <math>G</math> containing <math>N</math>, onto the set of all subgroups of the [[quotient group]] <math>G/N</math>. Loosely speaking, the structure of the subgroups of <math>G/N</math> is exactly the same as the structure of the subgroups of <math>G</math> containing <math>N</math>, with <math>N</math> collapsed to the [[identity element]]. Specifically, if : <math>G</math> is a group, : <math>N \triangleleft G</math>, a [[normal subgroup]] of <math>G</math>, : <math>\mathcal{G} = \{ A \mid N \subseteq A \leq G \}</math>, the set of all subgroups <math>A</math> of <math>G</math> that contain <math>N</math>, and : <math>\mathcal{N} = \{ S \mid S \leq G/N \}</math>, the set of all subgroups of <math>G/N</math>, then there is a bijective map <math>\phi: \mathcal{G} \to \mathcal{N}</math> such that : <math>\phi(A) = A/N</math> for all <math>A \in \mathcal{G}.</math> One further has that if <math>A</math> and <math>B</math> are in <math>\mathcal{G}</math> then * <math>A \subseteq B</math> if and only if <math>A/N \subseteq B/N</math>; * if <math>A \subseteq B</math> then <math>|B:A| = |B/N:A/N|</math>, where <math>|B:A|</math> is the [[index (group theory)|index]] of <math>A</math> in <math>B</math> (the number of [[coset]]s <math>bA</math> of <math>A</math> in <math>B</math>); * <math>\langle A,B \rangle / N = \left\langle A/N, B/N \right\rangle,</math> where <math>\langle A, B \rangle</math> is the subgroup of <math>G</math> [[Generating set of a group|generated]] by <math>A\cup B;</math> * <math>(A \cap B)/N = A/N \cap B/N</math>, and * <math>A</math> is a normal subgroup of <math>G</math> if and only if <math>A/N</math> is a normal subgroup of <math>G/N</math>. This list is far from exhaustive. In fact, most properties of subgroups are preserved in their images under the bijection onto subgroups of a quotient group. More generally, there is a [[Galois connection|monotone Galois connection]] <math>(f^*, f_*)</math> between the [[lattice of subgroups]] of <math>G</math> (not necessarily containing <math>N</math>) and the lattice of subgroups of <math>G/N</math>: the lower adjoint of a subgroup <math>H</math> of <math>G</math> is given by <math>f^*(H) = HN/N</math> and the upper adjoint of a subgroup <math>K/N</math> of <math>G/N</math> is a given by <math>f_*(K/N) = K</math>. The associated [[closure operator]] on subgroups of <math>G</math> is <math>\bar H = HN</math>; the associated [[kernel operator]] on subgroups of <math>G/N</math> is the identity. A proof of the correspondence theorem can be found [https://proofwiki.org/wiki/Correspondence_Theorem_(Group_Theory) here]. <!-- This needs to be expanded to include rings, etc. --> Similar results hold for [[ring (mathematics)|rings]], [[module (mathematics)|modules]], [[vector space]]s, and [[algebra over a field|algebras]]. More generally an [[Isomorphism_theorems#Theorem_D_(universal_algebra)|analogous result]] that concerns [[congruence relation]]s instead of normal subgroups holds for any [[algebraic structure]]. == See also == * [[Modular lattice]] ==References== {{reflist}} [[Category:Isomorphism theorems]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)