Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cotton tensor
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{No footnotes|date=July 2017}} In [[differential geometry]], the '''Cotton tensor''' on a (pseudo)-[[Riemannian manifold]] of dimension ''n'' is a third-order [[tensor field|tensor]] concomitant of the [[metric tensor|metric]]. The vanishing of the Cotton tensor for {{nowrap|1=''n'' = 3}} is [[necessary condition|necessary]] and [[sufficient condition]] for the manifold to be locally [[conformally flat]]. By contrast, in dimensions {{nowrap|''n'' ≥ 4}}, the vanishing of the Cotton tensor is necessary but not sufficient for the metric to be conformally flat; instead, the corresponding necessary and sufficient condition in these higher dimensions is the vanishing of the [[Weyl tensor]], while the Cotton tensor just becomes a constant times the divergence of the Weyl tensor. For {{nowrap|''n'' < 3}} the Cotton tensor is identically zero. The concept is named after [[Émile Cotton]]. The proof of the classical result that for {{nowrap|1=''n'' = 3}} the vanishing of the Cotton tensor is equivalent to the metric being conformally flat is given by [[Luther P. Eisenhart|Eisenhart]] using a standard [[integrability condition|integrability]] argument. This tensor density is uniquely characterized by its conformal properties coupled with the demand that it be differentiable for arbitrary metrics, as shown by {{Harv|Aldersley|1979}}. Recently, the study of three-dimensional spaces is becoming of great interest, because the Cotton tensor restricts the relation between the Ricci tensor and the [[energy–momentum tensor]] of matter in the [[Einstein equation]]s and plays an important role in the [[Hamiltonian formalism]] of [[general relativity]]. == Definition == In coordinates, and denoting the [[Ricci tensor]] by ''R''<sub>''ij''</sub> and the scalar curvature by ''R'', the components of the Cotton tensor are :<math>C_{ijk} = \nabla_{k} R_{ij} - \nabla_{j} R_{ik} + \frac{1}{2(n-1)}\left( \nabla_{j}Rg_{ik} - \nabla_{k}Rg_{ij}\right).</math> The Cotton tensor can be regarded as a vector valued [[Differential form|2-form]], and for ''n'' = 3 one can use the [[Hodge star operator]] to convert this into a second order trace free tensor density :<math>C_i^j = \nabla_{k} \left( R_{li} - \frac{1}{4} Rg_{li}\right)\epsilon^{klj},</math> sometimes called the ''Cotton–[[James W. York|York]] tensor''. ==Properties== ===Conformal rescaling=== Under conformal rescaling of the metric <math>\tilde{g} = e^{2\omega} g</math> for some scalar function <math>\omega</math>. We see that the [[Christoffel symbol]]s transform as :<math>\widetilde{\Gamma}^{\alpha}_{\beta\gamma}=\Gamma^{\alpha}_{\beta\gamma}+S^{\alpha}_{\beta\gamma}</math> where <math>S^{\alpha}_{\beta\gamma}</math> is the tensor :<math>S^{\alpha}_{\beta\gamma} = \delta^{\alpha}_{\gamma} \partial_{\beta} \omega + \delta^{\alpha}_{\beta} \partial_{\gamma} \omega - g_{\beta\gamma} \partial^{\alpha} \omega</math> The [[Riemann curvature tensor]] transforms as :<math>{\widetilde{R}^{\lambda}}{}_{\mu\alpha\beta}={R^{\lambda}}_{\mu\alpha\beta}+\nabla_{\alpha}S^{\lambda}_{\beta\mu}-\nabla_{\beta}S^{\lambda}_{\alpha\mu}+S^{\lambda}_{\alpha\rho}S^{\rho}_{\beta\mu}-S^{\lambda}_{\beta\rho}S^{\rho}_{\alpha\mu}</math> In <math>n</math>-dimensional manifolds, we obtain the [[Ricci tensor]] by contracting the transformed Riemann tensor to see it transform as :<math>\widetilde{R}_{\beta\mu}=R_{\beta\mu}-g_{\beta\mu}\nabla^{\alpha}\partial_{\alpha}\omega-(n-2)\nabla_{\mu}\partial_{\beta}\omega+(n-2)(\partial_{\mu}\omega\partial_{\beta}\omega-g_{\beta\mu}\partial^{\lambda}\omega\partial_{\lambda}\omega)</math> Similarly the [[Ricci scalar]] transforms as :<math>\widetilde{R}=e^{-2\omega}R-2e^{-2\omega}(n-1)\nabla^{\alpha}\partial_{\alpha}\omega-(n-2)(n-1)e^{-2\omega}\partial^{\lambda}\omega\partial_{\lambda}\omega</math> Combining all these facts together permits us to conclude the Cotton-York tensor transforms as :<math>\widetilde{C}_{\alpha\beta\gamma}=C_{\alpha\beta\gamma}+(n-2)\partial_{\lambda}\omega {W_{\beta\gamma\alpha}}^{\lambda}</math> or using coordinate independent language as :<math> \tilde{C} = C \; + (n-2) \; \operatorname{grad} \, \omega \; \lrcorner \; W,</math> where the gradient is contracted with the [[Weyl tensor]] ''W''. ===Symmetries=== The Cotton tensor has the following symmetries: :<math>C_{ijk} = - C_{ikj} \, </math> and therefore :<math>C_{[ijk]} = 0. \, </math> In addition the Bianchi formula for the [[Weyl tensor]] can be rewritten as :<math>\delta W = (3-n) C, \, </math> where <math>\delta</math> is the positive divergence in the first component of ''W''. ==References== {{reflist}} *{{Cite journal |first=S. J. |last=Aldersley |title=Comments on certain divergence-free tensor densities in a 3-space |journal=[[Journal of Mathematical Physics]] |volume=20 |issue=9 |pages=1905–1907 |year=1979 |doi=10.1063/1.524289 |bibcode = 1979JMP....20.1905A |doi-access=free }} *{{Cite book |first=Yvonne |last=Choquet-Bruhat |authorlink=Yvonne Choquet-Bruhat|title=General Relativity and the Einstein Equations |publisher=[[Oxford University Press]] |location=Oxford, England |year=2009 |isbn=978-0-19-923072-3 }} *{{Cite journal |first=É. |last=Cotton |authorlink=Émile Cotton |title=Sur les variétés à trois dimensions |journal=[[Annales de la Faculté des Sciences de Toulouse]] |series=II |volume=1 |issue=4 |pages=385–438 |year=1899 |url=http://www.numdam.org/numdam-bin/fitem?id=AFST_1899_2_1_4_385_0 |url-status=dead |archiveurl=https://web.archive.org/web/20071010003140/http://www.numdam.org/numdam-bin/fitem?id=AFST_1899_2_1_4_385_0 |archivedate=2007-10-10 }} *{{Cite book |first=Luther P. |last=Eisenhart|authorlink=Luther Eisenhart |title=Riemannian Geometry |publisher=[[Princeton University Press]] |location=Princeton, NJ |orig-date=1925 |year=1977 |isbn=0-691-08026-7 }} * A. Garcia, F.W. Hehl, C. Heinicke, A. Macias (2004) "The Cotton tensor in Riemannian spacetimes", [[Classical and Quantum Gravity]] 21: 1099–1118, Eprint [https://arxiv.org/abs/gr-qc/0309008 arXiv:gr-qc/0309008] [[Category:Riemannian geometry]] [[Category:Tensors in general relativity]] [[Category:Tensors]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Harv
(
edit
)
Template:No footnotes
(
edit
)
Template:Nowrap
(
edit
)
Template:Reflist
(
edit
)