Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Critical graph
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Undirected graph}} {{distinguish|text=the [[Critical path method]] in project management}} [[File:Critical graph sample.svg|right|thumb|250px|On the left-top a vertex critical graph with chromatic number 6; next all the N-1 subgraphs with chromatic number 5.]] In [[graph theory]], a '''critical graph''' is an [[undirected graph]] all of whose proper subgraphs have smaller [[chromatic number]]. In such a graph, every vertex or edge is a '''critical element''', in the sense that its deletion would decrease the number of colors needed in a [[graph coloring]] of the given graph. Each time a single edge or vertex (along with its incident edges) is removed from a critical graph, the decrease in the number of colors needed to color that graph cannot be by more than one. == Variations == A ''<math>k</math>-critical graph'' is a critical graph with chromatic number <math>k</math>. A graph <math>G</math> with chromatic number <math>k</math> is ''<math>k</math>-vertex-critical'' if each of its vertices is a critical element. Critical graphs are the ''minimal'' members in terms of chromatic number, which is a very important measure in graph theory. Some properties of a <math>k</math>-critical graph <math>G</math> with <math>n</math> vertices and <math>m</math> edges: * <math>G</math> has only one [[Glossary of graph theory|component]]. * <math>G</math> is finite (this is the [[de Bruijn–Erdős theorem (graph theory)|De Bruijn–Erdős theorem]]).{{r|dbe}} * The minimum [[degree (graph theory)|degree]] <math>\delta(G)</math> obeys the inequality <math>\delta(G)\ge k-1</math>. That is, every vertex is adjacent to at least <math>k-1</math> others. More strongly, <math>G</math> is <math>(k-1)</math>-[[K-edge-connected graph|edge-connected]].{{r|lovasz}} * If <math>G</math> is a [[regular graph]] with degree <math>k-1</math>, meaning every vertex is adjacent to exactly <math>k-1</math> others, then <math>G</math> is either the [[complete graph]] <math>K_k</math> with <math>n=k</math> vertices, or an odd-length [[cycle graph]]. This is [[Brooks' theorem]].{{r|brooks}} * <math>2m\ge(k-1)n+k-3</math>.{{r|dirac}} * <math>2m\ge (k-1)n+\lfloor(k-3)/(k^2-3)\rfloor n</math>.{{r|gallai-1}} * Either <math>G</math> may be decomposed into two smaller critical graphs, with an edge between every pair of vertices that includes one vertex from each of the two subgraphs, or <math>G</math> has at least <math>2k-1</math> vertices.{{r|gallai-2}} More strongly, either <math>G</math> has a decomposition of this type, or for every vertex <math>v</math> of <math>G</math> there is a <math>k</math>-coloring in which <math>v</math> is the only vertex of its color and every other color class has at least two vertices.{{r|stehlik}} Graph <math>G</math> is vertex-critical [[if and only if]] for every vertex <math>v</math>, there is an optimal proper coloring in which <math>v</math> is a singleton color class. As {{harvtxt|Hajós|1961}} showed, every <math>k</math>-critical graph may be formed from a [[complete graph]] <math>K_k</math> by combining the [[Hajós construction]] with an operation that identifies two non-adjacent vertices. The graphs formed in this way always require <math>k</math> colors in any proper coloring.{{r|hajos}} A '''double-critical graph''' is a connected graph in which the deletion of any pair of adjacent vertices decreases the chromatic number by two. It is an [[open problem]] to determine whether <math>K_k</math> is the only double-critical <math>k</math>-chromatic graph.{{r|erdos}} ==See also== *[[Factor-critical graph]] ==References== {{commons category}} {{reflist|refs= <ref name=brooks>{{citation|doi=10.1017/S030500410002168X|last1=Brooks|first1=R. L.|journal=Proceedings of the Cambridge Philosophical Society|pages=194–197|issue=2|title=On colouring the nodes of a network|volume=37|year=1941|bibcode=1941PCPS...37..194B |s2cid=209835194 }}</ref> <ref name=dbe>{{citation|last1=de Bruijn|first1=N. G.|author1-link=Nicolaas Govert de Bruijn|last2=Erdős|first2=P.|author2-link=Paul Erdős|journal=Nederl. Akad. Wetensch. Proc. Ser. A|pages=371–373|title=A colour problem for infinite graphs and a problem in the theory of relations|volume=54|year=1951|doi=10.1016/S1385-7258(51)50053-7|url=https://research.tue.nl/nl/publications/a-colour-problem-for-infinite-graphs-and-a-problem-in-the-theory-of-relations(8bb2b225-bd1a-4924-97ee-0eefca35f01b).html|citeseerx=10.1.1.210.6623}}. ([[Indagationes Mathematicae|''Indag. Math.'']] '''13'''.)</ref> <ref name=dirac>{{citation|doi=10.1112/plms/s3-7.1.161|last=Dirac|first=G. A.|author-link=Gabriel Andrew Dirac|journal=Proceedings of the London Mathematical Society|pages=161–195|title=A theorem of R. L. Brooks and a conjecture of H. Hadwiger|issue=1|volume=7|year=1957}}</ref> <ref name=erdos>{{citation|last=Erdős|first=Paul|author-link=Paul Erdős|contribution=Problem 2|page=361|publisher=Proc. Colloq., Tihany|title=In Theory of Graphs|year=1967}}</ref> <ref name=gallai-1>{{citation|last=Gallai|first=T.|author-link=Tibor Gallai|journal=Publ. Math. Inst. Hungar. Acad. Sci.|pages=165–192|title=Kritische Graphen I|volume=8|year=1963|ref=none}}</ref> <ref name=gallai-2>{{citation|last=Gallai|first=T.|author-link=Tibor Gallai|journal=Publ. Math. Inst. Hungar. Acad. Sci.|pages=373–395|title=Kritische Graphen II|volume=8|year=1963|ref=none}}</ref> <ref name=hajos>{{citation|last=Hajós|first=G.|author-link=György Hajós|title=Über eine Konstruktion nicht {{mvar|n}}-färbbarer Graphen|journal=Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe|volume=10|pages=116–117|year=1961}} <!-- Might be in: Bericht 1951-1966: Gesamtregister der Jahrgänge I-XV: Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg. Germany: n.p., 1969. {{GBurl|aqxDAAAAMAAJ}} oclc 578119357 --></ref> <ref name=lovasz>{{citation|last=Lovász|first=László|author-link=László Lovász|contribution=Solution to Exercise 9.21|publisher=North-Holland|title=Combinatorial Problems and Exercises |edition=2nd |year=1992 |isbn=978-0-8218-6947-5 }}</ref> <ref name=stehlik>{{citation|last=Stehlík|first=Matěj|doi=10.1016/S0095-8956(03)00069-8|issue=2|journal=[[Journal of Combinatorial Theory]]|mr=2017723|pages=189–194|series=Series B|title=Critical graphs with connected complements|volume=89|year=2003|doi-access=}}</ref> }} ==Further reading== {{refbegin}} *{{citation|last1=Jensen|first1=T. R.|last2=Toft|first2=B.|isbn=0-471-02865-7|location=New York|publisher=Wiley-Interscience|title=Graph coloring problems|year=1995}} *{{citation|doi=10.1016/j.disc.2008.05.021|last1=Stiebitz|first1=Michael|last2=Tuza|first2=Zsolt|last3=Voigt|first3=Margit|author3-link= Margit Voigt |title=On list critical graphs|journal=Discrete Mathematics|publisher=Elsevier|volume=309|issue=15|date=6 August 2009|pages=4931–4941|doi-access=}} {{refend}} [[Category:Graph families]] [[Category:Graph coloring]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Commons category
(
edit
)
Template:Distinguish
(
edit
)
Template:Harvtxt
(
edit
)
Template:R
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)