Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cross-correlation matrix
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{other uses|Correlation function (disambiguation)}} {{Multiple issues| {{disputed|date=December 2018}} {{More citations needed|date=December 2009}} }} {{Correlation and covariance}} The '''cross-correlation matrix''' of two [[random vector]]s is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms. ==Definition== For two [[random vector]]s <math>\mathbf{X} = (X_1,\ldots,X_m)^{\rm T}</math> and <math>\mathbf{Y} = (Y_1,\ldots,Y_n)^{\rm T}</math>, each containing [[random element]]s whose [[expected value]] and [[variance]] exist, the '''cross-correlation matrix''' of <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> is defined by<ref name=Gubner>{{cite book |first=John A. |last=Gubner |year=2006 |title=Probability and Random Processes for Electrical and Computer Engineers |publisher=Cambridge University Press |isbn=978-0-521-86470-1}}</ref>{{rp|p.337}} {{Equation box 1 |indent = |title= |equation = <math>\operatorname{R}_{\mathbf{X}\mathbf{Y}} \triangleq\ \operatorname{E}[\mathbf{X} \mathbf{Y}^{\rm T}]</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} and has dimensions <math>m \times n</math>. Written component-wise: :<math>\operatorname{R}_{\mathbf{X}\mathbf{Y}} = \begin{bmatrix} \operatorname{E}[X_1 Y_1] & \operatorname{E}[X_1 Y_2] & \cdots & \operatorname{E}[X_1 Y_n] \\ \\ \operatorname{E}[X_2 Y_1] & \operatorname{E}[X_2 Y_2] & \cdots & \operatorname{E}[X_2 Y_n] \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \operatorname{E}[X_m Y_1] & \operatorname{E}[X_m Y_2] & \cdots & \operatorname{E}[X_m Y_n] \\ \\ \end{bmatrix} </math> The random vectors <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> need not have the same dimension, and either might be a scalar value. ==Example== For example, if <math>\mathbf{X} = \left( X_1,X_2,X_3 \right)^{\rm T}</math> and <math>\mathbf{Y} = \left( Y_1,Y_2 \right)^{\rm T}</math> are random vectors, then <math>\operatorname{R}_{\mathbf{X}\mathbf{Y}}</math> is a <math>3 \times 2</math> matrix whose <math>(i,j)</math>-th entry is <math>\operatorname{E}[X_i Y_j]</math>. ==Complex random vectors== If <math>\mathbf{Z} = (Z_1,\ldots,Z_m)^{\rm T}</math> and <math>\mathbf{W} = (W_1,\ldots,W_n)^{\rm T}</math> are [[complex random vector]]s, each containing random variables whose expected value and variance exist, the cross-correlation matrix of <math>\mathbf{Z}</math> and <math>\mathbf{W}</math> is defined by :<math>\operatorname{R}_{\mathbf{Z}\mathbf{W}} \triangleq\ \operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm H}]</math> where <math>{}^{\rm H}</math> denotes [[Hermitian transpose|Hermitian transposition]]. ==Uncorrelatedness== Two random vectors <math>\mathbf{X}=(X_1,\ldots,X_m)^{\rm T} </math> and <math>\mathbf{Y}=(Y_1,\ldots,Y_n)^{\rm T} </math> are called '''uncorrelated''' if :<math>\operatorname{E}[\mathbf{X} \mathbf{Y}^{\rm T}] = \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{Y}]^{\rm T}.</math> They are uncorrelated if and only if their cross-covariance matrix <math>\operatorname{K}_{\mathbf{X}\mathbf{Y}}</math> matrix is zero. In the case of two [[complex random vector]]s <math>\mathbf{Z}</math> and <math>\mathbf{W}</math> they are called uncorrelated if :<math>\operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm H}] = \operatorname{E}[\mathbf{Z}]\operatorname{E}[\mathbf{W}]^{\rm H}</math> and :<math>\operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm T}] = \operatorname{E}[\mathbf{Z}]\operatorname{E}[\mathbf{W}]^{\rm T}.</math> ==Properties== ===Relation to the cross-covariance matrix=== The cross-correlation is related to the ''cross-covariance matrix'' as follows: :<math>\operatorname{K}_{\mathbf{X}\mathbf{Y}} = \operatorname{E}[(\mathbf{X} - \operatorname{E}[\mathbf{X}])(\mathbf{Y} - \operatorname{E}[\mathbf{Y}])^{\rm T}] = \operatorname{R}_{\mathbf{X}\mathbf{Y}} - \operatorname{E}[\mathbf{X}] \operatorname{E}[\mathbf{Y}]^{\rm T}</math> : Respectively for complex random vectors: :<math>\operatorname{K}_{\mathbf{Z}\mathbf{W}} = \operatorname{E}[(\mathbf{Z} - \operatorname{E}[\mathbf{Z}])(\mathbf{W} - \operatorname{E}[\mathbf{W}])^{\rm H}] = \operatorname{R}_{\mathbf{Z}\mathbf{W}} - \operatorname{E}[\mathbf{Z}] \operatorname{E}[\mathbf{W}]^{\rm H}</math> ==See also== *[[Autocorrelation]] *[[Correlation does not imply causation]] *[[Covariance function]] *[[Pearson product-moment correlation coefficient]] *[[Correlation function (astronomy)]] *[[Correlation function (statistical mechanics)]] *[[Correlation function (quantum field theory)]] *[[Mutual information]] *[[Rate distortion theory#Rate–distortion functions|Rate distortion theory]] *[[Radial distribution function]] ==References== {{reflist}} ==Further reading== * Hayes, Monson H., ''Statistical Digital Signal Processing and Modeling'', John Wiley & Sons, Inc., 1996. {{ISBN|0-471-59431-8}}. * Solomon W. Golomb, and [[Guang Gong]]. [http://www.cambridge.org/us/academic/subjects/computer-science/cryptography-cryptology-and-coding/signal-design-good-correlation-wireless-communication-cryptography-and-radar Signal design for good correlation: for wireless communication, cryptography, and radar]. Cambridge University Press, 2005. * M. Soltanalian. [http://theses.eurasip.org/theses/573/signal-design-for-active-sensing-and/download/ Signal Design for Active Sensing and Communications]. Uppsala Dissertations from the Faculty of Science and Technology (printed by Elanders Sverige AB), 2014. {{DEFAULTSORT:Correlation Function}} [[Category:Covariance and correlation]] [[Category:Time series]] [[Category:Spatial analysis]] [[Category:Matrices (mathematics)]] [[Category:Signal processing]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Correlation and covariance
(
edit
)
Template:Equation box 1
(
edit
)
Template:ISBN
(
edit
)
Template:Multiple issues
(
edit
)
Template:Other uses
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)