Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cubane
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Organic compound (C8H8) with a cube carbon structure}} {{chembox | Watchedfields = changed | verifiedrevid = 443545029 | Name = Cubane | ImageFileL1 = Cuban.svg | ImageNameL1 = Structural formula of cubane | ImageClassL1 = skin-invert | ImageFileR1 = Cubane molecule ball.png | ImageNameR1 = Ball-and-stick model of cubane | PIN = Cubane<ref name=iupac2013>{{cite book | title = Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book) | publisher = [[Royal Society of Chemistry|The Royal Society of Chemistry]] | date = 2014 | location = Cambridge | page = 169 | doi = 10.1039/9781849733069-FP001 | isbn = 978-0-85404-182-4 | quote = The retained names adamantane and cubane are used in general nomenclature and as preferred IUPAC names.}}</ref> | SystematicName = Pentacyclo[4.2.0.0<sup>2,5</sup>.0<sup>3,8</sup>.0<sup>4,7</sup>]octane | OtherNames = |Section1={{Chembox Identifiers | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | ChemSpiderID = 119867 | PubChem = 136090 | InChIKey = TXWRERCHRDBNLG-UHFFFAOYAL | StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChI = 1S/C8H8/c1-2-5-3(1)7-4(1)6(2)8(5)7/h1-8H | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey = TXWRERCHRDBNLG-UHFFFAOYSA-N | CASNo_Ref = {{cascite|correct|??}} | CASNo = 277-10-1 | UNII_Ref = {{fdacite|correct|FDA}} | UNII = Z5HM0Q7DK1 | ChEBI_Ref = {{ebicite|correct|EBI}} | ChEBI = 33014 | SMILES = C12C3C4C1C5C2C3C45 | InChI = 1/C8H8/c1-2-5-3(1)7-4(1)6(2)8(5)7/h1-8H }} |Section2={{Chembox Properties | Formula = {{chem2|C8H8}} | MolarMass = 104.15 g/mol | Density = 1.29 g/cm<sup>3</sup> | Appearance = Transparent<ref name=ch>{{cite web | url=https://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/Start.html | title=Start }}</ref> crystalline solid | MeltingPtC = 133.5 | MeltingPt_ref = <ref name = Biegasiewicz /> | BoilingPtC = 161.6 | BoilingPt_ref = <ref name= Biegasiewicz /> }} |Section8={{Chembox Related | OtherFunction = [[Cuneane]]<br />[[Dodecahedrane]]<br />[[Tetrahedrane]]<br />[[Prismane]]<br />[[Prismane C8]] | OtherFunction_label = [[hydrocarbon]]s | OtherCompounds = [[Octafluorocubane]]<br />[[Octanitrocubane]]<br />[[Octaazacubane]]<br />[[Mirex]] }} }} '''Cubane''' is a synthetic [[hydrocarbon]] compound with the [[Chemical formula|formula]] {{chem2|C8H8}}. It consists of eight [[carbon]] atoms arranged at the corners of a [[Cube (geometry)|cube]], with one [[hydrogen]] atom attached to each carbon atom. A solid [[crystal]]line substance, cubane is one of the [[Platonic hydrocarbon]]s and a member of the [[prismanes]]. It was first synthesized in 1964 by [[Philip Eaton]] and Thomas Cole.<ref name="eaton-1964" /> Before this work, Eaton believed that cubane would be impossible to synthesize due to the "required 90 degree [[molecular geometry|bond angles]]".<ref>{{cite book |last1=Teachers |first1=University of New South Wales Summer School for Chemistry |title=Approach to Chemistry: Lectures and Workshop Reports of the ... Summer School for Chemistry Teachers |date=1963 |publisher=The University |page=98 |url=https://books.google.com/books?id=cFA0AQAAIAAJ |language=en}} "This compound was described only a few months ago and, curiously enough, it is quite easy to make, although only a year ago I would have predicted that it would be difficult, or even impossible, to synthesize."</ref><ref>{{cite book |last1=Moore |first1=John W. |last2=Stanitski |first2=Conrad L. |last3=Jurs |first3=Peter C. |title=Chemistry: The Molecular Science |date=2002 |publisher=Harcourt College Publishers |isbn=978-0-03-032011-8 |page=372 |url=https://books.google.com/books?id=XjcvAQAAIAAJ |language=en}} "This sharp bond angle creates severe bond strain in cubane, a compound thought previously impossible to synthesize because of the required 90° bond angles."</ref> The cubic shape requires the carbon atoms to adopt an unusually sharp 90° bonding angle, which would be highly [[strain (chemistry)|strained]] as compared to the [[tetrahedral molecular geometry#Tetrahedral bond angle|109.45° angle]] of a [[tetrahedral geometry|tetrahedral]] carbon. Once formed, cubane is quite [[kinetic stability|kinetically stable]], due to a lack of readily available decomposition paths. It is the simplest hydrocarbon with [[octahedral symmetry]]. Having high potential energy and kinetic stability makes cubane and its derivative compounds useful for controlled energy storage. For example, [[octanitrocubane]] and [[heptanitrocubane]] have been studied as high-performance explosives. These compounds also typically have a very high [[density]] for hydrocarbon molecules. The resulting high [[energy density]] means a large amount of energy can be stored in a comparably smaller amount of space, an important consideration for applications in fuel storage and energy transport. Furthermore, their geometry and stability make them suitable [[isostere]]s for benzene rings.<ref>{{Cite journal |last1=Wiesenfeldt |first1=Mario P. |last2=Rossi-Ashton |first2=James A. |last3=Perry |first3=Ian B. |last4=Diesel |first4=Johannes |last5=Garry |first5=Olivia L. |last6=Bartels |first6=Florian |last7=Coote |first7=Susannah C. |last8=Ma |first8=Xiaoshen |last9=Yeung |first9=Charles S. |last10=Bennett |first10=David J. |last11=MacMillan |first11=David W. C. |date=June 2023 |title=General access to cubanes as benzene bioisosteres |journal=Nature |language=en |volume=618 |issue=7965 |pages=513–518 |doi=10.1038/s41586-023-06021-8 |pmid=37015289 |issn=1476-4687|pmc=10680098 |bibcode=2023Natur.618..513W }}</ref> ==Synthesis== The classic 1964 synthesis starts with the conversion of [[2-cyclopentenone]] to 2-bromo[[cyclopentadienone]]:<ref name="eaton-1964"/><ref name=eaton1964 /> [[File:Cyclopentenone to 2-bromocyclopentadienone.png|500px|class=skin-invert]] [[Allylic]] [[bromination]] with [[N-Bromosuccinimide|''N''-bromosuccinimide]] in [[carbon tetrachloride]] followed by addition of molecular bromine to the [[alkene]] gives a 2,3,4-tribromocyclopentanone. Treating this compound with [[diethylamine]] in [[diethyl ether]] causes [[elimination reaction|elimination]] of two equivalents of [[hydrogen bromide]] to give the diene product. [[File:CubaneSynthesis.png|thumb|left|500px|Eaton's 1964 synthesis of cubane]]{{clear left}} The construction of the eight-carbon cubane framework begins when 2-bromocyclopentadienone undergoes a spontaneous [[Diels-Alder reaction|Diels-Alder dimerization]]. One ketal of the [[Endo-exo isomerism|''endo'' isomer]] is subsequently selectively deprotected with aqueous [[hydrochloric acid]] to '''3'''. In the next step, the ''endo'' isomer '''3''' (with both [[alkene]] groups in close proximity) forms the cage-like isomer '''4''' in a [[photochemical]] [2+2] [[cycloaddition]]. The [[haloketone|bromoketone]] group is converted to ring-contracted [[carboxylic acid]] '''5''' in a [[Favorskii rearrangement]] with [[potassium hydroxide]]. Next, the thermal [[decarboxylation]] takes place through the [[acid chloride]] (with [[thionyl chloride]]) and the [[tert-butyl|''tert''-butyl]] [[perester]] '''6''' (with [[Tert-Butyl hydroperoxide|''tert''-butyl hydroperoxide]] and [[pyridine]]) to '''7'''; afterward, the acetal is once more removed in '''8'''. A second Favorskii rearrangement gives '''9''', and finally another decarboxylation gives, via '''10''', cubane ('''11'''). A more approachable laboratory synthesis of disubstituted cubane involves bromination of the ethylene ketal of [[cyclopentanone]] to give a tribromocyclopentanone derivative. Subsequent steps involve dehydrobromination, Diels-Alder dimerization, etc.<ref>{{Cite journal|doi=10.1071/C97021|title=Dimethyl Cubane-1,4-dicarboxylate: A Practical Laboratory Scale Synthesis|year=1997|last1=Bliese|first1=Marianne|last2=Tsanaktsidis|first2=John|journal=Australian Journal of Chemistry|volume=50|issue=3|page=189}}</ref><ref>{{Cite web|author =Fluorochem, Inc|date=July 1989|title=Cubane Derivatives for Propellant Applications|url=https://apps.dtic.mil/sti/pdfs/ADA210368.pdf|url-status=live|archive-url=https://web.archive.org/web/20210709185435/https://apps.dtic.mil/sti/pdfs/ADA210368.pdf |archive-date=2021-07-09 }}</ref> [[File:Cuban4.svg|Alternative synthesis of a disubstituted cubane|555x555px|class=skin-invert|center]] The resulting cubane-1,4-dicarboxylic acid is used to synthesize other substituted cubanes. Cubane itself can be obtained nearly quantitatively by photochemical decarboxylation of the thiohydroxamate ester (the [[Barton decarboxylation]]).<ref>{{Cite journal |last=Eaton |first=Philip E. |date=1992 |title=Cubane: Ausgangsverbindungen für die Chemie der neunziger Jahre und des nächsten Jahrhunderts |url=https://onlinelibrary.wiley.com/doi/10.1002/ange.19921041105 |journal=Angewandte Chemie |language=de |volume=104 |issue=11 |pages=1447–1462 |doi=10.1002/ange.19921041105|bibcode=1992AngCh.104.1447E |url-access=subscription }}</ref> ==Reactions and derivatives== Cubane is highly strained, but cannot decompose because [[cubene]] molecules are [[pyramidal alkene]]s, too high-energy for most [[elimination reaction|elimination pathways]]. Certain metals [[metal-ion-catalyzed σ-bond rearrangement|catalyze σ-bond rearrangement]] to [[cuneane]]:<ref name=March /><ref name=kindler /> :[[File:Cuban_zu_Cunean.svg|176x176px|class=skin-invert]] With a [[rhodium]] catalyst, cubane first forms ''syn''-tricyclooctadiene, which can thermally decompose to [[cyclooctatetraene]] at 50–60 °C.<ref>{{Cite journal |last1=Cassar |first1=Luigi |last2=Eaton |first2=Philip E. |last3=Halpern |first3=Jack |date=1970 |title=Catalysis of symmetry-restricted reactions by transition metal compounds. Valence isomerization of cubane |url=https://pubs.acs.org/doi/abs/10.1021/ja00714a075 |journal=Journal of the American Chemical Society |language=en |volume=92 |issue=11 |pages=3515–3518 |doi=10.1021/ja00714a075 |bibcode=1970JAChS..92.3515C |issn=0002-7863|url-access=subscription }}</ref> :[[File:Cubane_to_cyclooctatetraene.svg|400x400px|class=skin-invert]] The main cubane functionalization challenge is [[C-H bond activation]]. Cubenes still inhibit decomposition during [[radical substitution]], but the reaction offers little control against oversubstitution. In polar reactions, cubane reacts somewhat similarly to [[arene]]s or [[PSEPT|other cluster compounds]]: it [[metalation|metallates]] easily.<ref name=ReactivitySurvey>{{cite website|website=Cubane|first=B.|last=Muir|publisher=[[Imperial College London]]|title=Reactivity|url=https://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/Reactivity.html|access-date=22 May 2025|url-status=live|archive-url=https://web.archive.org/web/20240119125713/https://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/Reactivity.html|archive-date=19 Jan 2024}}</ref> Cubane is slightly [[carbon acid|acidic]], deprotonating about 63000 times faster than [[cyclohexane]].<ref>{{cite website|website=Cubane|first=B.|last=Muir|publisher=[[Imperial College London]]|title=Properties|at=The nature of the C–H bond|url=https://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/Properties.html|access-date=22 May 2025|url-status=live|archive-url=https://web.archive.org/web/20240119125716/https://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/Properties.html|archive-date=19 Jan 2024}}</ref> Cubane substituents display normal reactivity. For example a [[Curtius rearrangement]] followed by [[organic oxidation]] converts {{chem name|cubane tetra(carbonylchloride)}} to [[tetranitrocubane]].<ref name=ReactivitySurvey/> However, [[electron-rich]] substituents such as [[alcohol (chemistry)|alcohols]] can enable decomposition; they stabilize the cubene intermediate as a [[keto-enol tautomerism|ketone (or equivalent) tautomer]].<ref name=MMisc/> [[Hypercubane]] was predicted to exist in a 2014 publication.<ref>{{cite journal|last=Pichierri|first=F.|journal=Chem. Phys. Lett.|date=2014|volume=612|pages=198–202|doi=10.1016/j.cplett.2014.08.032|title= Hypercubane: DFT-based prediction of an ''O<sub>h</sub>''-symmetric double-shell hydrocarbon|bibcode=2014CPL...612..198P}}</ref><ref>{{Cite web | url=http://www.compchemhighlights.org/2014/12/hypercubane-dft-based-prediction-of-oh.html |title = Hypercubane: DFT-based prediction of an Oh-symmetric double-shell hydrocarbon}}</ref> ===Persubstituted derivatives=== Octaphenylcubane pre-dates the parent compound. Freedman synthesized it from [[tetraphenylcyclobutadiene nickel bromide]] in 1962. It is a sparingly soluble colourless compound that melts at 425–427 °C.<ref name= Biegasiewicz /><ref name=freedman1961 /><ref name=freedman1962 /><ref name=freedman1965 /> [[Octanitrocubane]] is a [[green explosive]]. Both [[heptafluorocubane]] and [[octafluorocubane]] were synthesized in 2022 to study octafluorocubane's unusual [[electronic structure]].<ref>{{cite journal |vauthors=Sugiyama M, Akiyama M, Yonezawa Y, Komaguchi K, Higashi M, Nozaki K, Okazoe T |date=August 2022 |title=Electron in a cube: Synthesis and characterization of perfluorocubane as an electron acceptor |journal=Science |volume=377 |issue=6607 |pages=756–759 |doi=10.1126/science.abq0516 |pmid=35951682 |bibcode=2022Sci...377..756S |s2cid=251515925}}</ref> Single-electron reduction to the [[radical anion]] {{chem|C|8|F|8|-}} traps<ref>Pichierri, F. Substituent effects in cubane and hypercubane: a DFT and QTAIM study. ''Theor Chem Acc'' 2017; 136: 114. {{doi|10.1007/s00214-017-2144-5}}</ref> an otherwise-free electron inside the cube, making it the world's smallest box.<ref>{{cite journal |vauthors=Krafft MP, Riess JG |date=August 2022 |title=Perfluorocubane-a tiny electron guzzler |journal=Science |volume=377 |issue=6607 |pages=709 |doi=10.1126/science.adc9195 |pmid=35951708 |bibcode=2022Sci...377..709K |s2cid=251517529|url=https://hal.science/hal-03873082 }}</ref> ===Cubenes and ''poly''-cubylcubane=== Despite their orbital strain, two cubenes have been synthesized, and a third analyzed [[computational chemistry|computationally]]. ''ortho''-{{chem name|Cubene}}, produced via [[lithium-halogen exchange]] followed by elimination,<ref name=MMisc>{{cite website|website=Cubane|first=B.|last=Muir|publisher=[[Imperial College London]]|title=Further topics|url=https://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/FurtherTopics.html|access-date=22 May 2025|url-status=live|archive-url=http://web.archive.org/web/20240119125713/https://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/FurtherTopics.html|archive-date=19 Jan 2024}}</ref> was the most pyramidalized alkene ever made at the time of its synthesis;<ref>{{cite journal |title= Cubene (1,2-dehydrocubane) |first1= Philip E. |last1= Eaton |first2= Michele |last2= Maggini |journal= J. Am. Chem. Soc. |year= 1988 |volume= 110 |issue= 21 |pages= 7230–7232 |doi= 10.1021/ja00229a057 |bibcode= 1988JAChS.110.7230E }}</ref> ''meta''-{{chem name|cubene}} is even less stable, and ''para''-{{chem name|cubene}} probably only exists as a [[diradical]] rather than an actual diagonal bond.<ref>{{cite book |title= Strained Hydrocarbons |url= https://archive.org/details/strainedhydrocar00hypo_746 |url-access= limited |editor-first= Helena |editor-last= Dodziuk |chapter= 2.3 A Theoretical Approach to the Study and Design of Prismane Systems |first1= Ruslan M. |last1= Minyaev |first2= Vladimir I. |last2= Minkin |first3= Tatyana N. |last3= Gribanova |publisher= Wiley |year= 2009 |isbn= 9783527627141 |page=55}}</ref> They rapidly undergo [[nucleophilic addition]].<ref name=Cubenes/> Decomposition of cubenes has enabled chemists to synthesize cubylcubane, as well as higher oligomers.<ref name=Cubenes>{{cite journal |last1=Eaton |first1=Philip E. |title=Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century |journal=Angewandte Chemie International Edition in English |date=1992 |volume=31 |issue=11 |pages=1421–1436 |doi=10.1002/anie.199214211 |language=en |issn=1521-3773}}</ref> Per [[X-ray diffraction]], the central cubane-cubane bond is exceedingly short (1.458 Å), much shorter than the typical C-C single bond (1.578 Å). This is attributed to the fact that the exocyclic orbitals of cubane are [[s orbital|''s''-rich]] and close to the nucleus.<ref>{{cite journal |last1=Gilardi |first1=Richard. |last2=Maggini |first2=Michele. |last3=Eaton |first3=Philip E. |title=X-ray structures of cubylcubane and 2-tert-butylcubylcubane: short cage-cage bonds |journal=Journal of the American Chemical Society |date=1 October 1988 |volume=110 |issue=21 |pages=7232–7234 |doi=10.1021/ja00229a058 |bibcode=1988JAChS.110.7232G |issn=0002-7863}}</ref> The ''oligo''-cubylcubanes are rigid molecular rods considered for [[liquid crystal]] design, but scarcely accessible through conventional [[organic synthesis]]. Absent solubizing groups on the cubane [[monomer]], oligomers with at least 4 units are essentially insoluble.<ref>{{cite website|website=Cubane|first=B.|last=Muir|publisher=[[Imperial College London]]|title=Applications|at=Polymers|url=https://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/Applications.html|access-date=22 May 2025|url-status=live|archive-url=https://web.archive.org/web/20240508043615/https://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/Applications.html|archive-date=8 May 2024}}</ref> Poly-cubylcubane is, however, synthesizable via high pressure, solid-state polymerization. It exhibits exceptionally high [[refractive index]].<ref>{{cite journal |last1=Huang |first1=Haw-Tyng |last2=Zhu |first2=Li |last3=Ward |first3=Matthew D. |last4=Wang |first4=Tao |last5=Chen |first5=Bo |last6=Chaloux |first6=Brian L. |last7=Wang |first7=Qianqian |last8=Biswas |first8=Arani |last9=Gray |first9=Jennifer L. |last10=Kuei |first10=Brooke |last11=Cody |first11=George D. |last12=Epshteyn |first12=Albert |last13=Crespi |first13=Vincent H. |last14=Badding |first14=John V. |last15=Strobel |first15=Timothy A. |title=Nanoarchitecture through Strained Molecules: Cubane-Derived Scaffolds and the Smallest Carbon Nanothreads |journal=Journal of the American Chemical Society |date=21 January 2020 |volume=142 |issue=42 |pages=17944–17955 |doi=10.1021/jacs.9b12352 |pmid=31961671 |bibcode=2020JAChS.14217944H |s2cid=210870993 |issn=0002-7863|url=https://par.nsf.gov/servlets/purl/10210835}}</ref> ==See also== *[[Basketane]] *[[Tetrahedrane]] *[[Platonic hydrocarbon]] *[[Cubane-type cluster]] ==References== {{reflist|colwidth=30em |refs= <ref name= Biegasiewicz >{{cite journal| last1 = Biegasiewicz | first1 = Kyle | last2 = Griffiths | first2 = Justin | last3 = Savage | first3 = G. Paul | last4 = Tsanakstidis | first4 = John | last5 = Priefer | first5 = Ronny | year = 2015 | title = Cubane: 50 years later | journal = Chemical Reviews| volume = 115 | issue = 14 | pages = 6719–6745 | doi=10.1021/cr500523x | pmid=26102302}}</ref> <ref name="eaton-1964">{{cite journal|title=Cubane|first1=Philip E.|last1=Eaton|first2=Thomas W.|last2=Cole|journal=[[J. Am. Chem. Soc.]]|date=1964|volume=86|issue=15|pages=3157–3158|doi=10.1021/ja01069a041|bibcode=1964JAChS..86.3157E }}</ref> <ref name=eaton1964 >{{cite journal|title=The Cubane System|first1=Philip E.|last1=Eaton|first2=Thomas W.|last2=Cole|journal=[[J. Am. Chem. Soc.]]|date=1964|volume=86|issue=5|pages=962–964|doi=10.1021/ja01059a072|bibcode=1964JAChS..86..962E }}</ref> <ref name=March>{{cite book|first1=Michael B.|last1=Smith|first2=Jerry|last2=March|title=March's Advanced Organic Chemistry|url=https://archive.org/details/organicchemistry00mich_115|url-access=limited|edition=5th|publisher=John Wiley & Sons|date=2001|page=[https://archive.org/details/organicchemistry00mich_115/page/n1477 1459]|isbn=0-471-58589-0}}</ref> <ref name=kindler>{{cite journal|title=Studien über den Mechanismus chemischer Reaktionen, XXIII. Hydrierungen von Nitrilen unter Verwendung von Terpenen als Wasserstoffdonatoren|first1=K.|last1=Kindler|first2=K.|last2=Lührs|journal=[[Chem. Ber.]]|volume=99|date=1966|pages=227–232|doi=10.1002/cber.19660990135}}</ref> <ref name=freedman1961>{{cite journal|title=Tetraphenylcyclobutadiene Derivatives. II.1 Chemical Evidence for the Triplet State|first=H. H.|last=Freedman|journal=[[J. Am. Chem. Soc.]]|date=1961|volume=83|issue=9|pages=2195–2196|doi=10.1021/ja01470a037|bibcode=1961JAChS..83.2195F }}</ref> <ref name=freedman1962>{{cite journal|title=Tetraphenylcyclobutadiene Derivatives. IV.1 "Octaphenylcubane"; A Dimer of Tetraphenylcyclobutadiene|first1=H. H.|last1=Freedman|first2=D. R.|last2=Petersen|journal=[[J. Am. Chem. Soc.]]|date=1962|volume=84|issue=14|pages=2837–2838|doi=10.1021/ja00873a046|bibcode=1962JAChS..84.2837F }}</ref> <ref name=freedman1965>{{cite journal|title=Structure of the Dimer of tetraphenylcyclobutadiene|first1=G. S.|last1=Pawley|first2=W. N.|last2=Lipscomb|first3=H. H.|last3=Freedman|journal=[[J. Am. Chem. Soc.]]|date=1964|volume=86|issue=21|pages=4725–4726|doi=10.1021/ja01075a042|bibcode=1964JAChS..86.4725P }}</ref> }} ==External links== * [http://www.synarchive.com/syn/14 Eaton's cubane synthesis at SynArchive.com] * [http://www.synarchive.com/syn/189 Tsanaktsidis's cubane synthesis at SynArchive.com] * [http://www.ch.ic.ac.uk/local/projects/b_muir/Cubane/Cubanepro/Start.html Cubane chemistry at Imperial College London] [[Category:Polycyclic nonaromatic hydrocarbons]] [[Category:Molecular geometry]] [[Category:Theoretical chemistry]] [[Category:Cyclobutanes]] [[Category:Substances discovered in the 1960s]] [[Category:Pentacyclic compounds]] [[Category:Cubes]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Chem
(
edit
)
Template:Chem2
(
edit
)
Template:Chem name
(
edit
)
Template:Chembox
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Cite website
(
edit
)
Template:Clear left
(
edit
)
Template:Doi
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)