Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cullen number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical concept}} {{pp-semi-indef|small=yes}} In [[mathematics]], a '''Cullen number''' is a member of the [[integer sequence]] <math>C_n = n \cdot 2^n + 1</math> (where <math>n</math> is a [[natural number]]). Cullen numbers were first studied by [[James Cullen (mathematician)|James Cullen]] in 1905. The numbers are special cases of [[Proth number]]s. == Properties == In 1976 [[Christopher Hooley]] showed that the [[natural density]] of positive [[integer]]s <math>n \leq x</math> for which ''C''<sub>''n''</sub> is a [[prime number|prime]] is of the [[Big O notation#Little-o notation|order]] ''o''(''x'') for <math>x \to \infty</math>. In that sense, [[almost all]] Cullen numbers are [[composite number|composite]].<ref name=EPSW94>{{cite book | last1=Everest | first1=Graham | last2=van der Poorten | first2=Alf | author2-link=Alfred van der Poorten | last3=Shparlinski | first3=Igor | last4=Ward | first4=Thomas | title=Recurrence sequences | series=Mathematical Surveys and Monographs | volume=104 | location=[[Providence, RI]] | publisher=[[American Mathematical Society]] | year=2003 | isbn=0-8218-3387-1 | zbl=1033.11006 | page=94 }}</ref> Hooley's proof was reworked by Hiromi Suyama to show that it works for any sequence of numbers ''n''·2<sup>''n'' + ''a''</sup> + ''b'' where ''a'' and ''b'' are integers, and in particular also for [[Woodall number]]s. The only known '''Cullen primes''' are those for ''n'' equal to: : 1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828, 6328548, 6679881 {{OEIS|id=A005849}}. Still, it is [[conjecture]]d that there are infinitely many Cullen primes. A Cullen number ''C''<sub>''n''</sub> is [[divisibility|divisible]] by ''p'' = 2''n'' − 1 if ''p'' is a [[prime number]] of the form 8''k'' − 3; furthermore, it follows from [[Fermat's little theorem]] that if ''p'' is an [[parity (mathematics)|odd]] prime, then ''p'' divides ''C''<sub>''m''(''k'')</sub> for each ''m''(''k'') = (2<sup>''k''</sup> − ''k'') (''p'' − 1) − ''k'' (for ''k'' > 0). It has also been shown that the prime number ''p'' divides ''C''<sub>(''p'' + 1)/2</sub> when the [[Jacobi symbol]] (2 | ''p'') is −1, and that ''p'' divides ''C''<sub>(3''p'' − 1)/2</sub> when the Jacobi symbol (2 | ''p'') is + 1. It is unknown whether there exists a prime number ''p'' such that ''C''<sub>''p''</sub> is also prime. ''C<sub>p</sub>'' follows the [[recurrence relation]] :<math>C_p=4(C_{p-1}+C_{p-2})+1</math>. == Generalizations == Sometimes, a '''generalized Cullen number base ''b''''' is defined to be a number of the form ''n''·''b''<sup>''n''</sup> + 1, where ''n'' + 2 > ''b''; if a prime can be written in this form, it is then called a '''generalized Cullen prime'''. [[Woodall number]]s are sometimes called '''Cullen numbers of the second kind'''.<ref>{{Cite journal|last=Marques|first=Diego|year=2014|title=On Generalized Cullen and Woodall Numbers That are Also Fibonacci Numbers|url=https://cs.uwaterloo.ca/journals/JIS/VOL17/Marques/marques5r2.pdf|journal=Journal of Integer Sequences|volume=17}}</ref> As of April 2025, the largest known generalized Cullen prime is 4052186·69<sup>4052186</sup> + 1. It has 7,451,366 digits and was discovered by a [[PrimeGrid]] participant.<ref>{{Cite web|url=https://www.primegrid.com/download/GC69-4052186.pdf|title=PrimeGrid Official Announcement|date=26 April 2025|website=Primegrid|access-date=26 April 2025}}</ref><ref>{{cite web|title=PrimePage Primes: 4052186 · 69^4052186 + 1|url=https://t5k.org/primes/page.php?id=140607|access-date=26 April 2025|website=t5k.org}}</ref> According to [[Fermat's little theorem]], if there is a prime ''p'' such that ''n'' is divisible by ''p'' − 1 and ''n'' + 1 is divisible by ''p'' (especially, when ''n'' = ''p'' − 1) and ''p'' does not divide ''b'', then ''b''<sup>''n''</sup> must be [[modular arithmetic|congruent]] to 1 mod ''p'' (since ''b''<sup>''n''</sup> is a power of ''b''<sup>''p'' − 1</sup> and ''b''<sup>''p'' − 1</sup> is congruent to 1 mod ''p''). Thus, ''n''·''b''<sup>''n''</sup> + 1 is divisible by ''p'', so it is not prime. For example, if some ''n'' congruent to 2 mod 6 (i.e. 2, 8, 14, 20, 26, 32, ...), ''n''·''b''<sup>''n''</sup> + 1 is prime, then ''b'' must be divisible by 3 (except ''b'' = 1). The least ''n'' such that ''n''·''b''<sup>''n''</sup> + 1 is prime (with question marks if this term is currently unknown) are<ref name="loeh">{{cite web|url=http://guenter.loeh.name/gc/status.html |title=Generalized Cullen primes |date=6 May 2017 |last=Löh |first=Günter }}</ref><ref>{{cite web|url=http://harvey563.tripod.com/GClist.txt |title=List of generalized Cullen primes base 101 to 10000 |date=6 May 2017 |last=Harvey |first=Steven }}</ref> :1, 1, 2, 1, 1242, 1, 34, 5, 2, 1, 10, 1, ?, 3, 8, 1, 19650, 1, 6460, 3, 2, 1, 4330, 2, 2805222, 117, 2, 1, ?, 1, 82960, 5, 2, 25, 304, 1, 36, 3, 368, 1, 1806676, 1, 390, 53, 2, 1, ?, 3, ?, 9665, 62, 1, 1341174, 3, ?, 1072, 234, 1, 220, 1, 142, 1295, 8, 3, 16990, 1, 474, 129897, 4052186, 1, 13948, 1, 2525532, 3, 2, 1161, 12198, 1, 682156, 5, 350, 1, 1242, 26, 186, 3, 2, 1, 298, 14, 101670, 9, 2, 775, 202, 1, 1374, 63, 2, 1, ... {{OEIS|id=A240234}} {|class="wikitable" !''b'' !Numbers ''n'' such that ''n'' × ''b''<sup>''n''</sup> + 1 is prime<ref name="loeh"/> ![[OEIS]] sequence |- |3 |2, 8, 32, 54, 114, 414, 1400, 1850, 2848, 4874, 7268, 19290, 337590, 1183414, ... |{{OEIS link|id=A006552}} |- |4 |1, 3, 7, 33, 67, 223, 663, 912, 1383, 3777, 3972, 10669, 48375, 1740349, ... |{{OEIS link|id=A007646}} |- |5 |1242, 18390, ... | |- |6 |1, 2, 91, 185, 387, 488, 747, 800, 9901, 10115, 12043, 13118, 30981, 51496, 515516, ..., 4582770 |{{OEIS link|id=A242176}} |- |7 |34, 1980, 9898, 474280, ... |{{OEIS link|id=A242177}} |- |8 |5, 17, 23, 1911, 20855, 35945, 42816, ..., 749130, ... |{{OEIS link|id=A242178}} |- |9 |2, 12382, 27608, 31330, 117852, ... |{{OEIS link|id=A265013}} |- |10 |1, 3, 9, 21, 363, 2161, 4839, 49521, 105994, 207777, ... |{{OEIS link|id=A007647}} |- |11 |10, ... | |- |12 |1, 8, 247, 3610, 4775, 19789, 187895, 345951, ... |{{OEIS link|id=A242196}} |- |13 |... | |- |14 |3, 5, 6, 9, 33, 45, 243, 252, 1798, 2429, 5686, 12509, 42545, 1198433, 1486287, 1909683, ... |{{OEIS link|id=A242197}} |- |15 |8, 14, 44, 154, 274, 694, 17426, 59430, ... |{{OEIS link|id=A242198}} |- |16 |1, 3, 55, 81, 223, 1227, 3012, 3301, ... |{{OEIS link|id=A242199}} |- |17 |19650, 236418, ... | |- |18 |1, 3, 21, 23, 842, 1683, 3401, 16839, 49963, 60239, 150940, 155928, 612497, ... |{{OEIS link|id=A007648}} |- |19 |6460, ... | |- |20 |3, 6207, 8076, 22356, 151456, 793181, 993149, ... |{{OEIS link|id=A338412}} |} == References == {{Reflist}} == Further reading == * {{Citation |last=Cullen |first=James |title=Question 15897 |journal=Educ. Times |date=December 1905 |page=534}}. * {{Citation |first=Richard K. |last=Guy |author-link=Richard K. Guy |title=Unsolved Problems in Number Theory |edition=3rd |publisher=[[Springer Verlag]] |location=New York |year=2004 |isbn=0-387-20860-7 | zbl=1058.11001 | at=Section B20 }}. * {{Citation |last=Hooley |first=Christopher |author-link=Christopher Hooley |title=Applications of sieve methods |publisher=[[Cambridge University Press]] |year=1976 |isbn=0-521-20915-3 |pages=115–119 | zbl=0327.10044 | series=Cambridge Tracts in Mathematics | volume=70 }}. * {{Citation |first=Wilfrid |last=Keller |title=New Cullen Primes |journal=[[Mathematics of Computation]] |volume=64 |issue=212 |year=1995 |pages=1733–1741, S39–S46 |url=https://www.ams.org/mcom/1995-64-212/S0025-5718-1995-1308456-3/S0025-5718-1995-1308456-3.pdf | zbl=0851.11003 | issn=0025-5718 |doi=10.2307/2153382|jstor=2153382 |doi-access=free }}. == External links == * Chris Caldwell, [http://primes.utm.edu/top20/page.php?id=6 The Top Twenty: Cullen primes] at The [[Prime Pages]]. * [http://primes.utm.edu/glossary/page.php?sort=Cullens The Prime Glossary: Cullen number] at The Prime Pages. * Chris Caldwell, [https://primes.utm.edu/top20/page.php?id=42 The Top Twenty: Generalized Cullen] at The Prime Pages. * {{MathWorld | urlname=CullenNumber | title=Cullen number}} * [https://web.archive.org/web/20220318135759/http://www.prothsearch.com/cullen.html Cullen prime: definition and status] (outdated), Cullen Prime Search is now hosted at [[PrimeGrid]] * Paul Leyland, [https://web.archive.org/web/20131219031355/http://www.leyland.vispa.com/numth/factorization/cullen_woodall/cw.html (Generalized) Cullen and Woodall Numbers] {{Prime number classes|state=collapsed}} {{Classes of natural numbers}} [[Category:Integer sequences]] [[Category:Unsolved problems in number theory]] [[Category:Classes of prime numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:MathWorld
(
edit
)
Template:OEIS
(
edit
)
Template:OEIS link
(
edit
)
Template:Pp-semi-indef
(
edit
)
Template:Prime number classes
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)