Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cyclopentadiene
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Chembox | Verifiedfields = changed | Watchedfields = changed | verifiedrevid = 448739996 | ImageFileL1 = Cyclopentadiene.png | ImageNameL1 = Skeletal formula of cyclopentadiene | ImageFileR1 = Cyclopentadiene-3D-vdW.png | ImageNameR1 = Spacefill model of cyclopentadiene | ImageFile2 = Cyclopentadiene-3D-balls.png | ImageSize2 = 100 | ImageName2 = Ball and stick model of cyclopentadiene | PIN = Cyclopenta-1,3-diene | OtherNames = 1,3-Cyclopentadiene<ref name=PGCH/><br />Pyropentylene<ref>{{cite book |author = William M. Haynes |title = CRC Handbook of Chemistry and Physics |publisher = CRC Press/Taylor and Francis |date = 2016 |isbn = 978-1498754286 |volume=97 |page=276 (3-138) |trans-title=Physical Constants of Organic Compounds}}</ref> |Section1={{Chembox Identifiers | Abbreviations = CPD, HCp | CASNo = 542-92-7 | CASNo_Ref = {{cascite|correct|CAS}} | PubChem = 7612 | ChemSpiderID = 7330 | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | UNII = 5DFH9434HF | UNII_Ref = {{fdacite|correct|FDA}} | EINECS = 208-835-4 | MeSHName = 1,3-cyclopentadiene | ChEBI = 30664 | ChEBI_Ref = {{ebicite|correct|EBI}} | RTECS = GY1000000 | Beilstein = 471171 | Gmelin = 1311 | SMILES = C1C=CC=C1 | StdInChI = 1S/C5H6/c1-2-4-5-3-1/h1-4H,5H2 | StdInChI_Ref = {{stdinchicite|correct|chemspider}} | InChI = 1/C5H6/c1-2-4-5-3-1/h1-4H,5H2 | StdInChIKey = ZSWFCLXCOIISFI-UHFFFAOYSA-N | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | InChIKey = ZSWFCLXCOIISFI-UHFFFAOYAI }} |Section2={{Chembox Properties | C = 5 | H = 6 | Appearance = Colourless liquid | Odor = irritating, [[terpene]]-like<ref name=PGCH/> | Density = 0.802 g/cm<sup>3</sup> | MeltingPtK = 183 | BoilingPtK = 312 to 316 | pKa = 16 | ConjugateBase = [[Cyclopentadienyl anion]] | Solubility = insoluble<ref name=PGCH/> | VaporPressure = {{convert|400|mmHg|kPa|abbr=on}}<ref name=PGCH/> | RefractIndex = 1.44 (at 20 °C)<ref name="CRC97">{{Cite book |url=https://www.worldcat.org/oclc/930681942 |title=CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. |date=2016 |editor1=William M. Haynes |editor2=David R. Lide |editor3=Thomas J. Bruno |isbn=978-1-4987-5428-6 |edition=2016-2017, 97th |location=Boca Raton, Florida |publisher=CRC Press |oclc=930681942}}</ref> | MagSus = {{val|-44.5e-6|u=cm<sup>3</sup>/mol}} }} |Section3={{Chembox Structure | MolShape = Planar<ref>{{cite journal | title = Ab initio G2 and DFT calculations on electron affinity of cyclopentadiene, silole, germole and their 2,3,4,5-tetraphenyl substituted analogs: structure, stability and EPR parameters of the radical anions | first1= Valery I. |last1=Faustov |first2=Mikhail P. |last2=Egorov |first3=Oleg M. |last3=Nefedov |first4=Yuri N. |last4=Molin | journal = Phys. Chem. Chem. Phys. | year = 2000 | volume = 2 | pages = 4293–4297 | doi = 10.1039/b005247g | issue = 19| bibcode= 2000PCCP....2.4293F }}</ref> | Dipole = 0.419 [[Debye|D]]<ref name="CRC97"/> }} |Section4={{Chembox Thermochemistry | Entropy = 182.7 J/(mol·K) | HeatCapacity = 115.3 J/(mol·K) | DeltaHform = 105.9 kJ/mol<ref name="CRC97"/> }} |Section5={{Chembox Hazards | FlashPtC = 25 | PEL = TWA 75 ppm (200 mg/m<sup>3</sup>)<ref name=PGCH>{{PGCH|0170}}</ref> | IDLH = 750 ppm<ref name=PGCH/> | REL = TWA 75 ppm (200 mg/m<sup>3</sup>)<ref name=PGCH/> | LC50 = 14,182 ppm (rat, 2 [[hour|h]])<br/>5091 ppm (mouse, 2 h)<ref>{{IDLH|542927|Cyclopentadiene}}</ref> | AutoignitionPtC = 640 | NFPA-H = 2 | NFPA-F = 3 | NFPA-I = 0 }} |Section6={{Chembox Related | OtherFunction_label = [[hydrocarbon]]s | OtherFunction = [[Benzene]]<br/>[[Cyclobutadiene]]<br/>[[Cyclopentene]] | OtherCompounds = [[Dicyclopentadiene]] }} }} '''Cyclopentadiene''' is an [[organic compound]] with the [[chemical formula|formula]] C<sub>5</sub>H<sub>6</sub>.<ref name=scha1965>LeRoy H. Scharpen and Victor W. Laurie (1965): "Structure of cyclopentadiene". ''The Journal of Chemical Physics'', volume 43, issue 8, pages 2765–2766. {{doi|10.1063/1.1697207}}.</ref> It is often abbreviated '''CpH''' because the [[cyclopentadienyl anion]] is abbreviated Cp<sup>−</sup>. This colorless liquid has a strong and [[unpleasant odor]]. At room temperature, this cyclic [[diene]] [[dimer (chemistry)|dimerizes]] over the course of hours to give [[dicyclopentadiene]] via a [[Diels–Alder reaction]]. This dimer can be [[retro-Diels–Alder reaction|restored]] by heating to give the monomer. The compound is mainly used for the production of [[cyclopentene]] and its derivatives. It is popularly used as a precursor to the [[cyclopentadienyl anion]] (Cp<sup>−</sup>), an important [[ligand]] in [[cyclopentadienyl complex]]es in [[organometallic chemistry]].<ref>{{cite book |last=Hartwig |first= J. F. |title=Organotransition Metal Chemistry: From Bonding to Catalysis |publisher=University Science Books |location=New York, NY |date=2010 |isbn=978-1-891389-53-5}}</ref> ==Production and reactions== [[File:AW Cyclopentadiene.jpg|thumb|left|Cyclopentadiene monomer in an ice bath]] Cyclopentadiene production is usually not distinguished from [[dicyclopentadiene]] since they interconvert. They are obtained from coal tar (about 10–20 g/[[tonne|t]]) and by steam [[Cracking (chemistry)|cracking]] of [[Petroleum naphtha|naphtha]] (about 14 kg/t).<ref name=Ullmann/> To obtain cyclopentadiene monomer, commercial dicyclopentadiene is cracked by heating to around 180 °C. The monomer is collected by distillation and used soon thereafter.<ref>{{OrgSynth | title = Cyclopentadiene and 3-Chlorocyclopentene | prep = cv4p0238 | collvol = 4 | collvolpages = 238 | first= Robert Bruce |last=Moffett | year = 1962}}</ref> It advisable to use some form of [[fractionating column]] when doing this, to remove refluxing uncracked dimer. ===Sigmatropic rearrangement=== The hydrogen atoms in cyclopentadiene undergo rapid [[sigmatropic reaction|[1,5]-sigmatropic shifts]]. The hydride shift is, however, sufficiently slow at 0 °C to allow alkylated derivatives to be manipulated selectively.<ref>{{cite journal |last1=Corey |first1=E. J. |last2=Weinshenker |first2=N. M. |last3=Schaaf |first3=T. K. |last4=Huber |first4=W. |year=1969 |title=Stereo-controlled synthesis of prostaglandins F-2a and E-2 (dl)|journal=Journal of the American Chemical Society |volume=91 |issue=20 |pages=5675–5677 |doi=10.1021/ja01048a062 |pmid=5808505}}</ref> [[File:Prostaglandin Diels-Alder Corey (cropped2).png|400 px|thumb|center|Diene-selective Diels–Alder reaction in Corey's total synthesis of prostaglandin F2α]] Even more [[fluxional molecule|fluxional]] are the derivatives C<sub>5</sub>H<sub>5</sub>E(CH<sub>3</sub>)<sub>3</sub> (E = [[silicon|Si]], [[germanium|Ge]], [[tin|Sn]]), wherein the heavier element migrates from carbon to carbon with a low activation barrier. ===Diels–Alder reactions=== Cyclopentadiene is a highly reactive [[diene]] in the [[Diels–Alder reaction]] because minimal distortion of the diene is required to achieve the envelope geometry of the transition state compared to other dienes.<ref>{{cite journal |first1=Brian |last1=Levandowski |first2=Ken |last2=Houk |date=2015 |title=Theoretical Analysis of Reactivity Patterns in Diels–Alder Reactions of Cyclopentadiene, Cyclohexadiene, and Cycloheptadiene with Symmetrical and Unsymmetrical Dienophiles |doi=10.1021/acs.joc.5b00174 |pmid=25741891 |journal=[[J. Org. Chem.]] |volume=80 |issue=7 |pages=3530–3537}}</ref> Famously, cyclopentadiene dimerizes. The conversion occurs in hours at room temperature, but the monomer can be stored for days at −20 °C.<ref name=Ullmann>{{Ullmann|first1=Dieter |last1=Hönicke |first2=Ringo |last2=Födisch |first3=Peter |last3=Claus |first4=Michael |last4=Olson |title=Cyclopentadiene and Cyclopentene |DOI=10.1002/14356007.a08_227}}</ref> ===Deprotonation=== {{main|Cyclopentadienyl anion}} The compound is unusually [[acid]]ic (p''K''<sub>a</sub> = 16) for a [[hydrocarbon]], a fact explained by the high stability of the [[aromatic]] cyclopentadienyl anion, {{chem|C|5|H|5|−}}. [[Deprotonation]] can be achieved with a variety of bases, typically [[sodium hydride]], sodium metal, and [[butyl lithium]]. Salts of this anion are commercially available, including [[sodium cyclopentadienide]] and [[lithium cyclopentadienide]]. They are used to prepare [[cyclopentadienyl complex]]es. ===Metallocene derivatives=== {{main|Metallocene}} Metallocenes and related [[Cyclopentadienyl complex|cyclopentadienyl derivatives]] have been heavily investigated and represent a cornerstone of [[organometallic chemistry]] owing to their high stability. The first metallocene characterised, [[ferrocene]], was prepared the way many other metallocenes are prepared by combining alkali metal derivatives of the form MC<sub>5</sub>H<sub>5</sub> with dihalides of the [[transition metal]]s:<ref>{{cite book |author1-link=Gregory S. Girolami |author3-link=Robert Angelici |last1=Girolami |first1=G. S. |last2=Rauchfuss |first2=T. B. |last3=Angelici |first3=R. J. |title=Synthesis and Technique in Inorganic Chemistry |year=1999 |publisher=University Science Books |location=Mill Valley, CA |isbn=0-935702-48-2}}</ref> As typical example, [[nickelocene]] forms upon treating [[nickel(II) chloride]] with sodium cyclopentadienide in [[tetrahydrofuran|THF]].<ref>{{cite book |last1=Jolly |first1=W. L. |title=The Synthesis and Characterization of Inorganic Compounds |url=https://archive.org/details/synthesischaract0000joll |url-access=registration |year=1970 |publisher=Prentice-Hall |location=Englewood Cliffs, NJ |isbn=0-13-879932-6}}</ref> : NiCl<sub>2</sub> + 2 NaC<sub>5</sub>H<sub>5</sub> → Ni(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> + 2 NaCl Organometallic complexes that include both the cyclopentadienyl anion and cyclopentadiene itself are known, one example of which is the [[rhodocene]] derivative produced from the rhodocene monomer in [[protic solvent]]s.<ref>{{cite journal |title = Permethylmetallocene: 5. Reactions of Decamethylruthenium Cations |year = 1985 |last1 = Kolle |first1 = U. |last2 = Grub |first2 = J. |journal = [[Journal of Organometallic Chemistry|J. Organomet. Chem.]] |volume = 289 |issue = 1 |pages = 133–139 |doi =10.1016/0022-328X(85)88034-7 }}</ref> ===Organic synthesis=== It was the starting material in [[Leo Paquette]]'s 1982 synthesis of [[dodecahedrane]].<ref>{{cite journal |title= Domino Diels–Alder reactions. I. Applications to the rapid construction of polyfused cyclopentanoid systems |journal= [[J. Am. Chem. Soc.]] |year= 1974 |volume= 96 |issue= 14 |pages= 4671–4673 |doi= 10.1021/ja00821a052 |author1-link=Leo Paquette |last1=Paquette |first1= L. A. |last2= Wyvratt |first2= M. J. }}</ref> The first step involved [[redox|reductive]] dimerization of the molecule to give [[Fulvalene|dihydrofulvalene]], not simple addition to give dicyclopentadiene. [[File:DodecahedranePrecursorSynthesis.png|thumb|center|400px|The start of Paquette's 1982 dodecahedrane synthesis. Note the dimerisation of cyclopentadiene in step 1 to dihydrofulvalene.]] {{Clear left}} ==Uses== Aside from serving as a precursor to cyclopentadienyl-based catalysts, the main commercial application of cyclopentadiene is as a precursor to [[comonomer]]s. Semi-hydrogenation gives [[cyclopentene]]. Diels–Alder reaction with [[butadiene]] gives [[ethylidene norbornene]], a comonomer in the production of [[EPDM rubber]]s. ==Derivatives== [[File:(t-Bu)3C5H3.png|thumb|right|144 px|Structure of ''t''-Bu<sub>3</sub>C<sub>5</sub>H<sub>3</sub>, a prototypical [[bulky cyclopentadiene]]<ref>{{cite book |doi=10.1002/9781119477822.ch8 |title=Inorganic Syntheses |year=2018 |last1=Reiners |first1=Matthis |last2=Ehrlich |first2=Nico |last3=Walter |first3=Marc D. |chapter=Synthesis of Selected Transition Metal and Main Group Compounds with Synthetic Applications |volume=37 |page=199 |isbn=978-1-119-47782-2 |s2cid=105376454}}</ref>]] Cyclopentadiene can substitute one or more hydrogens, forming derivatives having covalent bonds: * [[Bulky cyclopentadiene]]s * [[Calicene]] * [[Cyclopentadienone]] * [[Di-tert-butylcyclopentadiene|Di-''tert''-butylcyclopentadiene]] * [[Methylcyclopentadiene]] * [[Pentamethylcyclopentadiene]] * [[Pentacyanocyclopentadiene]] Most of these substituted cyclopentadienes can also form [[anion]]s and join [[cyclopentadienyl complex]]es. ==See also== *[[Aromaticity]] == References == {{Reflist}} ==External links== *[http://www.inchem.org/documents/icsc/icsc/eics0857.htm International Chemical Safety Card 0857] *[https://www.cdc.gov/niosh/npg/npgd0170.html NIOSH Pocket Guide to Chemical Hazards] {{Cycloalkenes}} {{Annulenes}} {{Cyclopentadiene complexes}} [[Category:Cyclopentadienes| ]] [[Category:Annulenes]] [[Category:Five-membered rings]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annulenes
(
edit
)
Template:Chem
(
edit
)
Template:Chembox
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Clear left
(
edit
)
Template:Cycloalkenes
(
edit
)
Template:Cyclopentadiene complexes
(
edit
)
Template:Doi
(
edit
)
Template:Main
(
edit
)
Template:OrgSynth
(
edit
)
Template:Reflist
(
edit
)
Template:Ullmann
(
edit
)