Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dawson function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} [[File:Plot of the Dawson integral function F(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the Dawson integral function F(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the Dawson integral function F(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]] In [[mathematics]], the '''Dawson function''' or '''Dawson integral'''<ref>{{dlmf|id=7|title=Error Functions, Dawson's and Fresnel Integrals|first=N. M. |last=Temme}}</ref> (named after [[H. G. Dawson]]<ref>{{cite journal | author = Dawson, H. G. | title = On the Numerical Value of <math>\textstyle\int_0^h \exp(x^2) \, dx</math> | volume = s1-29 | number = 1 | pages = 519–522 | year = 1897 | doi=10.1112/plms/s1-29.1.519 | journal = Proceedings of the London Mathematical Society | url = https://zenodo.org/record/1433401 }}</ref>) is the one-sided Fourier–Laplace [[sine transform]] of the Gaussian function. ==Definition== [[Image:DawsonDp.svg|thumb|300px|right|The Dawson function, <math>F(x) = D_+(x),</math> around the origin]] [[Image:DawsonDm.svg|thumb|300px|right|The Dawson function, <math>D_-(x),</math> around the origin]] The Dawson function is defined as either: <math display=block>D_+(x) = e^{-x^2} \int_0^x e^{t^2}\,dt,</math> also denoted as <math>F(x)</math> or <math>D(x),</math> or alternatively <math display=block>D_-(x) = e^{x^2} \int_0^x e^{-t^2}\,dt.\!</math> The Dawson function is the one-sided Fourier–Laplace [[sine transform]] of the [[Gaussian function]], <math display=block>D_+(x) = \frac12 \int_0^\infty e^{-t^2/4}\,\sin(xt)\,dt.</math> It is closely related to the [[error function]] erf, as :<math id="exp(-x^2) was downstairs, should be upstairs"> D_+(x) = {\sqrt{\pi} \over 2} e^{-x^2} \operatorname{erfi} (x) = - {i \sqrt{\pi} \over 2 }e^{-x^2} \operatorname{erf} (ix) </math> where erfi is the imaginary error function, {{nowrap|1=erfi(''x'') = −''i'' erf(''ix'').}} <br> Similarly, <math display="block">D_-(x) = \frac{\sqrt{\pi}}{2} e^{x^2} \operatorname{erf}(x)</math> in terms of the real error function, erf. In terms of either erfi or the [[Faddeeva function]] <math>w(z),</math> the Dawson function can be extended to the entire [[complex plane]]:<ref>Mofreh R. Zaghloul and Ahmed N. Ali, "[https://dx.doi.org/10.1145/2049673.2049679 Algorithm 916: Computing the Faddeyeva and Voigt Functions]," ''ACM Trans. Math. Soft.'' '''38''' (2), 15 (2011). Preprint available at [https://arxiv.org/abs/1106.0151 arXiv:1106.0151].</ref> <math display=block>F(z) = {\sqrt{\pi} \over 2} e^{-z^2} \operatorname{erfi} (z) = \frac{i\sqrt{\pi}}{2} \left[ e^{-z^2} - w(z) \right],</math> which simplifies to <math display=block>D_+(x) = F(x) = \frac{\sqrt{\pi}}{2} \operatorname{Im}[w(x)]</math> <math display=block>D_-(x) = i F(-ix) = -\frac{\sqrt{\pi}}{2} \left[ e^{x^2} - w(-ix) \right]</math> for real <math>x.</math> For <math>|x|</math> near zero, {{nowrap|1=''F''(''x'') ≈ ''x''.}} For <math>|x|</math> large, {{nowrap|1=''F''(''x'') ≈ 1/(2''x'').}} More specifically, near the origin it has the series expansion <math display=block>F(x) = \sum_{k=0}^\infty \frac{(-1)^k \, 2^k}{(2k+1)!!} \, x^{2k+1} = x - \frac{2}{3} x^3 + \frac{4}{15} x^5 - \cdots,</math> while for large <math>x</math> it has the asymptotic expansion <math display=block>F(x) = \frac{1}{2 x} + \frac{1}{4 x^3} + \frac{3}{8 x^5} + \cdots.</math> More precisely <math display=block>\left|F(x) - \sum_{k=0}^{N} \frac{(2k-1)!!}{2^{k+1} x^{2k+1}}\right| \leq \frac{C_N}{x^{2N+3}}.</math> where <math>n!!</math> is the [[double factorial]]. <math>F(x)</math> satisfies the differential equation <math display=block>\frac{dF}{dx} + 2xF = 1\,\!</math> with the initial condition <math>F(0) = 0.</math> Consequently, it has extrema for <math display=block>F(x) = \frac{1}{2 x},</math> resulting in ''x'' = ±0.92413887... ({{OEIS2C|id=A133841}}), ''F''(''x'') = ±0.54104422... ({{OEIS2C|id=A133842}}). Inflection points follow for <math display=block>F(x) = \frac{x}{2 x^2 - 1},</math> resulting in ''x'' = ±1.50197526... ({{OEIS2C|id=A133843}}), ''F''(''x'') = ±0.42768661... ({{OEIS2C|id=A245262}}). (Apart from the trivial [[inflection point]] at <math>x = 0,</math> <math>F(x) = 0.</math>) ==Relation to Hilbert transform of Gaussian== The [[Hilbert transform]] of the Gaussian is defined as <math display=block>H(y) = \pi^{-1} \operatorname{P.V.} \int_{-\infty}^\infty \frac{e^{-x^2}}{y-x} \, dx</math> P.V. denotes the [[Cauchy principal value]], and we restrict ourselves to real <math>y.</math> <math>H(y)</math> can be related to the Dawson function as follows. Inside a principal value integral, we can treat <math>1/u</math> as a [[generalized function]] or distribution, and use the Fourier representation <math display=block>{1 \over u} = \int_0^\infty dk \, \sin ku = \int_0^\infty dk \, \operatorname{Im} e^{iku}.</math> With <math>1/u = 1/(y-x),</math> we use the exponential representation of <math>\sin(ku)</math> and complete the square with respect to <math>x</math> to find <math display=block>\pi H(y) = \operatorname{Im} \int_0^\infty dk \,\exp[-k^2/4+iky] \int_{-\infty}^\infty dx \, \exp[-(x+ik/2)^2].</math> We can shift the integral over <math>x</math> to the real axis, and it gives <math>\pi^{1/2}.</math> Thus <math display=block>\pi^{1/2} H(y) = \operatorname{Im} \int_0^\infty dk \, \exp[-k^2/4+iky].</math> We complete the square with respect to <math>k</math> and obtain <math display=block>\pi^{1/2}H(y) = e^{-y^2} \operatorname{Im} \int_0^\infty dk \, \exp[-(k/2-iy)^2].</math> We change variables to <math>u = ik/2+y:</math> <math display=block>\pi^{1/2}H(y) = -2e^{-y^2} \operatorname{Im} i \int_y^{i\infty+y} du\ e^{u^2}.</math> The integral can be performed as a contour integral around a rectangle in the complex plane. Taking the imaginary part of the result gives <math display=block>H(y) = 2\pi^{-1/2} F(y)</math> where <math>F(y)</math> is the Dawson function as defined above. The Hilbert transform of <math>x^{2n}e^{-x^2}</math> is also related to the Dawson function. We see this with the technique of differentiating inside the integral sign. Let <math display=block>H_n = \pi^{-1} \operatorname{P.V.} \int_{-\infty}^\infty \frac{x^{2n}e^{-x^2}}{y-x} \, dx.</math> Introduce <math display=block>H_a = \pi^{-1} \operatorname{P.V.} \int_{-\infty}^\infty {e^{-ax^2} \over y-x} \, dx.</math> The <math>n</math>th derivative is <math display=block>{\partial^nH_a \over \partial a^n} = (-1)^n\pi^{-1} \operatorname{P.V.} \int_{-\infty}^\infty \frac{x^{2n}e^{-ax^2}}{y-x} \, dx.</math> We thus find <math display=block>\left . H_n = (-1)^n \frac{\partial^nH_a}{\partial a^n} \right|_{a=1}.</math> The derivatives are performed first, then the result evaluated at <math>a = 1.</math> A change of variable also gives <math>H_a = 2\pi^{-1/2}F(y\sqrt a).</math> Since <math>F'(y) = 1-2yF(y),</math> we can write <math>H_n = P_1(y)+P_2(y)F(y)</math> where <math>P_1</math> and <math>P_2</math> are polynomials. For example, <math>H_1 = -\pi^{-1/2}y + 2\pi^{-1/2}y^2F(y).</math> Alternatively, <math>H_n</math> can be calculated using the [[recurrence relation]] (for <math>n \geq 0</math>) <math display=block>H_{n+1}(y) = y^2 H_n(y) - \frac{(2n-1)!!}{\sqrt{\pi} 2^n} y.</math> ==See also== * {{annotated link|List of mathematical functions}} ==References== {{reflist}} ==External links== * [https://www.gnu.org/software/gsl/manual/html_node/Dawson-Function.html gsl_sf_dawson] in the [[GNU Scientific Library]] * [https://jugit.fz-juelich.de/mlz/libcerf libcerf], numeric C library for complex error functions, provides a function ''voigt(x, sigma, gamma)'' with approximately 13–14 digits precision. It is based on the [[Faddeeva function]] as implemented in the [http://ab-initio.mit.edu/Faddeeva MIT Faddeeva Package] * [http://mathworld.wolfram.com/DawsonsIntegral.html Dawson's Integral] ''(at Mathworld)'' * [http://nlpc.stanford.edu/nleht/Science/reference/errorfun.pdf Error functions] [[Category:Gaussian function]] [[Category:Special functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Cite journal
(
edit
)
Template:Dlmf
(
edit
)
Template:Nowrap
(
edit
)
Template:OEIS2C
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)