Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Debye function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Mathematical function}} In [[mathematics]], the family of '''Debye functions''' is defined by <math display="block">D_n(x) = \frac{n}{x^n} \int_0^x \frac{t^n}{e^t - 1}\,dt.</math> The functions are named in honor of [[Peter Debye]], who came across this function (with ''n'' = 3) in 1912 when he analytically computed the [[heat capacity]] of what is now called the [[Debye model]]. == Mathematical properties == === Relation to other functions === The Debye functions are closely related to the [[polylogarithm]]. === Series expansion === They have the series expansion<ref>{{AS ref|27|998}}</ref> <math display="block">D_n(x) = 1 - \frac{n}{2(n+1)} x + n \sum_{k=1}^\infty \frac{B_{2k}}{(2k+n)(2k)!} x^{2k}, \quad |x| < 2\pi,\ n \ge 1,</math> where <math>B_n</math> is the {{mvar|n}}-th [[Bernoulli number]]. === Limiting values === <math display="block">\lim_{x \to 0} D_n(x) = 1.</math> If <math>\Gamma</math> is the [[gamma function]] and <math>\zeta</math> is the [[Riemann zeta function]], then, for <math>x \gg 0</math>,<ref name="Zwillinger_2014">{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik |chapter=3.411. |pages=355ff}}</ref> <math display="block">D_n(x) = \frac{n}{x^n} \int_0^x \frac{t^n\,dt}{e^t-1} \sim \frac{n}{x^n}\Gamma(n + 1) \zeta(n + 1), \qquad \operatorname{Re} n > 0,</math> === Derivative === The derivative obeys the relation <math display="block">x D^{\prime}_n(x) = n \left(B(x) - D_n(x)\right),</math> where <math>B(x) = x/(e^x-1)</math> is the Bernoulli function. == Applications in solid-state physics == === The Debye model === The [[Debye model]] has a [[Density of states|density of vibrational states]] <math display="block">g_\text{D}(\omega) = \frac{9\omega^2}{\omega_\text{D}^3} \,, \qquad 0\le\omega\le\omega_\text{D}</math> with the {{em|Debye frequency}} {{math|''ω''<sub>D</sub>}}. === Internal energy and heat capacity === Inserting {{math|''g''}} into the internal energy <math display="block">U = \int_0^\infty d\omega\,g(\omega)\,\hbar\omega\,n(\omega)</math> with the [[Bose–Einstein distribution]] <math display="block">n(\omega) = \frac{1}{\exp(\hbar\omega / k_\text{B} T)-1}.</math> one obtains <math display="block">U = 3 k_\text{B}T \, D_3(\hbar\omega_\text{D} / k_\text{B}T).</math> The heat capacity is the derivative thereof. === Mean squared displacement === The intensity of [[X-ray diffraction]] or [[neutron diffraction]] at wavenumber ''q'' is given by the [[Debye-Waller factor]] or the [[Lamb-Mössbauer factor]]. For isotropic systems it takes the form <math display="block">\exp(-2W(q)) = \exp\left(-q^2\langle u_x^2\rangle\right).</math> In this expression, the [[mean squared displacement]] refers to just once Cartesian component {{math|''u<sub>x</sub>''}} of the vector {{math|'''u'''}} that describes the displacement of atoms from their equilibrium positions. Assuming harmonicity and developing into normal modes,<ref>Ashcroft & Mermin 1976, App. L,</ref> one obtains <math display="block">2W(q) = \frac{\hbar^2 q^2}{6M k_\text{B}T} \int_0^\infty d\omega \frac{k_\text{B}T}{\hbar\omega}g(\omega) \coth\frac{\hbar\omega}{2k_\text{B}T}=\frac{\hbar^2 q^2}{6M k_\text{B}T} \int_0^\infty d\omega \frac{k_\text{B}T}{\hbar\omega} g(\omega) \left[\frac{2}{\exp(\hbar\omega/k_\text{B}T)-1}+1\right].</math> Inserting the density of states from the Debye model, one obtains <math display="block">2W(q) = \frac{3}{2} \frac{\hbar^2 q^2}{M\hbar\omega_\text{D}} \left[2\left(\frac{k_\text{B}T}{\hbar\omega_\text{D}}\right) D_1{\left(\frac{\hbar\omega_\text{D}}{k_\text{B}T}\right)} + \frac{1}{2}\right].</math> From the above [[power series]] expansion of <math>D_1</math> follows that the mean square displacement at high temperatures is linear in temperature <math display="block">2W(q) = \frac{3 k_\text{B}T q^2}{M\omega_\text{D}^2}.</math> The absence of <math>\hbar</math> indicates that this is a [[Classical Physics|classical]] result. Because <math>D_1(x)</math> goes to zero for <math>x \to \infty</math> it follows that for <math>T = 0</math> <math display="block">2W(q)=\frac{3}{4}\frac{\hbar^2 q^2}{M\hbar\omega_\text{D}}</math> ([[Zero-point energy|zero-point motion]]). ==References== {{Reflist}} ==Further reading== * {{AS ref|27|998}} * [http://mathworld.wolfram.com/DebyeFunctions.html "Debye function" entry in MathWorld], defines the Debye functions without prefactor ''n''/''x<sup>n</sup>'' == Implementations == * {{cite journal|first1=E. W.|last1=Ng| first2=C. J. |last2=Devine|title=On the computation of Debye functions of integer orders|journal=Math. Comp.|year=1970|volume=24|issue=110 |pages=405–407|doi=10.1090/S0025-5718-1970-0272160-6|mr=0272160|doi-access=free}} * {{cite journal|first1=I.|last1=Engeln|first2=D.|last2=Wobig| title=Computation of the generalized Debye functions delta(x,y) and D(x,y)|journal=Colloid & Polymer Science|volume=261|year=1983|pages=736–743|doi=10.1007/BF01410947|s2cid=98476561 }} * {{cite journal|first1=Allan J.|last1=MacLeod|title=Algorithm 757: MISCFUN, a software package to compute uncommon special functions|journal=ACM Trans. Math. Software|year=1996|volume=22|number=3|pages=288–301|doi=10.1145/232826.232846|s2cid=37814348 |doi-access=free}} [http://www.netlib.org/toms/757 Fortran 77 code] * [http://www.csit.fsu.edu/~burkardt/f_src/toms757/toms757.html Fortran 90 version] * {{cite journal|first1=Leonard C.|last1=Maximon|title=The dilogarithm function for complex argument|journal=Proc. R. Soc. A|year=2003|volume=459|number=2039| pages=2807–2819| doi=10.1098/rspa.2003.1156|bibcode=2003RSPSA.459.2807M |s2cid=122271244 }} * {{cite journal|first1=I. I.|last1=Guseinov| first2=B. A. |last2=Mamedov|title=Calculation of Integer and noninteger n-Dimensional Debye Functions using Binomial Coefficients and Incomplete Gamma Functions|year=2007|journal=Int. J. Thermophys.|volume=28|issue=4 |pages=1420–1426|doi=10.1007/s10765-007-0256-1|bibcode=2007IJT....28.1420G |s2cid=120284032 }} * [https://www.gnu.org/software/gsl/doc/html/specfunc.html#debye-functions C version] of the [[GNU Scientific Library]] [[Category:Special functions]] [[Category:Peter Debye]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:AS ref
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Em
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)