Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dedekind eta function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} {{distinguish|Weierstrass eta function|Dirichlet eta function}} [[Image:Dedekind Eta.jpg|right|thumb|500px|Dedekind {{mvar|η}}-function in the upper half-plane]] In [[mathematics]], the '''Dedekind eta function''', named after [[Richard Dedekind]], is a [[modular form]] of weight 1/2 and is a function defined on the [[upper half-plane]] of [[complex number]]s, where the imaginary part is positive. It also occurs in [[bosonic string theory]]. ==Definition== For any complex number {{mvar|τ}} with {{math|Im(''τ'') > 0}}, let {{math|''q'' {{=}} ''e''<sup>2''πiτ''</sup>}}; then the eta function is defined by, :<math>\eta(\tau) = e^\frac{\pi i \tau}{12} \prod_{n=1}^\infty \left(1-e^{2 n\pi i \tau}\right) = q^\frac{1}{24} \prod_{n=1}^\infty \left(1 - q^n\right) .</math> Raising the eta equation to the 24th power and multiplying by {{math|(2''π'')<sup>12</sup>}} gives :<math>\Delta(\tau)=(2\pi)^{12}\eta^{24}(\tau)</math> where {{math|Δ}} is the [[modular discriminant]]. The presence of [[24 (number)|24]] can be understood by connection with other occurrences, such as in the 24-dimensional [[Leech lattice]]. The eta function is [[Holomorphic function|holomorphic]] on the upper half-plane but cannot be continued analytically beyond it. [[File:Q-Eulero.jpeg|thumb|right|Modulus of Euler phi on the unit disc, colored so that black = 0, red = 4]] [[Image:Discriminant real part.jpeg|thumb|right|The real part of the modular discriminant as a function of {{mvar|q}}.]] The eta function satisfies the [[functional equation]]s<ref>{{cite journal|last=Siegel|first=C. L.|title=A Simple Proof of ''η''(−1/''τ'') {{=}} ''η''(''τ''){{sqrt|''τ''/''i''}}|journal=[[Mathematika]]|year=1954|volume=1|page=4|doi=10.1112/S0025579300000462}}</ref> :<math>\begin{align} \eta(\tau+1) &=e^\frac{\pi i}{12}\eta(\tau),\\ \eta\left(-\frac{1}{\tau}\right) &= \sqrt{-i\tau}\, \eta(\tau).\, \end{align}</math> In the second equation the [[Complex square root|branch of the square root]] is chosen such that {{math|{{sqrt|−''iτ''}} {{=}} 1}} when {{math|''τ'' {{=}} ''i''}}. More generally, suppose {{math|''a'', ''b'', ''c'', ''d''}} are integers with {{math|''ad'' − ''bc'' {{=}} 1}}, so that :<math>\tau\mapsto\frac{a\tau+b}{c\tau+d}</math> is a transformation belonging to the [[modular group]]. We may assume that either {{math|''c'' > 0}}, or {{math|''c'' {{=}} 0}} and {{math|''d'' {{=}} 1}}. Then :<math>\eta \left( \frac{a\tau+b}{c\tau+d} \right) = \epsilon (a,b,c,d) \left(c\tau+d\right)^\frac12 \eta(\tau),</math> where :<math>\epsilon (a,b,c,d)= \begin{cases} e^\frac{bi \pi}{12} &c=0,\,d=1, \\ e^{i\pi \left(\frac{a+d}{12c} - s(d,c)-\frac14\right)} &c>0. \end{cases}</math> Here {{math|''s''(''h'',''k'')}} is the [[Dedekind sum]] :<math>s(h,k)=\sum_{n=1}^{k-1} \frac{n}{k} \left( \frac{hn}{k} - \left\lfloor \frac{hn}{k} \right\rfloor -\frac12 \right).</math> Because of these functional equations the eta function is a [[modular form]] of weight {{sfrac|1|2}} and level 1 for a certain character of order 24 of the [[metaplectic group|metaplectic double cover]] of the modular group, and can be used to define other modular forms. In particular the [[modular discriminant]] of the [[Weierstrass elliptic function]] with :<math>\omega_2=\tau\omega_1</math> can be defined as :<math>\Delta(\tau) = (2 \pi\omega_1)^{12} \eta(\tau)^{24}\,</math> and is a modular form of weight 12. Some authors omit the factor of {{math|(2''π'')<sup>12</sup>}}, so that the series expansion has integral coefficients. The [[Jacobi triple product]] implies that the eta is (up to a factor) a Jacobi [[theta function]] for special values of the arguments:<ref>{{citation|first=Daniel|last= Bump|title=Automorphic Forms and Representations|year=1998|publisher=Cambridge University Press|isbn=0-521-55098-X}}</ref> :<math>\eta(\tau) = \sum_{n=1}^\infty \chi(n) \exp\left(\frac {\pi i n^2 \tau}{12}\right),</math> where {{math|''χ''(''n'')}} is "the" [[Dirichlet character]] modulo 12 with {{math|''χ''(±1) {{=}} 1}} and {{math|''χ''(±5) {{=}} −1}}. Explicitly,{{Citation needed|date=September 2016}} :<math>\eta(\tau) = e^\frac{\pi i \tau}{12}\vartheta\left(\frac{\tau+1}{2}; 3\tau\right).</math> The [[Euler function]] :<math>\begin{align} \phi(q) &= \prod_{n=1}^\infty \left(1-q^n\right) \\ &= q^{-\frac{1}{24}} \eta(\tau), \end{align}</math> has a power series by the [[Pentagonal number theorem|Euler identity]]: :<math>\phi(q)=\sum_{n=-\infty}^\infty (-1)^n q^\frac{3n^2-n}{2}.</math> Note that by using [[Pentagonal number theorem| Euler Pentagonal number theorem]] for <math> \mathfrak{I} (\tau )>0 </math>, the eta function can be expressed as :<math>\eta(\tau)=\sum_{n=-\infty}^\infty e^{\pi i n}e^{3\pi i \left(n+\frac{1}{6}\right)^2 \tau}.</math> This can be proved by using <math>x=2\pi i \tau</math> in [[Pentagonal number theorem| Euler Pentagonal number theorem]] with the definition of eta function. Another way to see the Eta function is through the following limit <math>\lim_{z \to 0} \frac{\vartheta_1(z|\tau)}{z}=2\pi \eta^3(\tau)</math> Which alternatively is: <math> \sum_{n=0}^\infty (-1)^n (2n+1)q^{\frac{(2n+1)^2}8}=\eta^3(\tau)</math> Where <math> \vartheta_1(z|\tau)</math> is the [[Jacobi Theta function ]] and <math> \vartheta_1(z|\tau)=-\vartheta_{11}(z;\tau)</math> Because the eta function is easy to compute numerically from either [[power series]], it is often helpful in computation to express other functions in terms of it when possible, and products and quotients of eta functions, called eta quotients, can be used to express a great variety of modular forms. The picture on this page shows the modulus of the Euler function: the additional factor of {{math|''q''<sup>{{sfrac|1|24}}</sup>}} between this and eta makes almost no visual difference whatsoever. Thus, this picture can be taken as a picture of eta as a function of {{mvar|q}}. == Combinatorial identities == The theory of the [[algebraic character]]s of the [[affine Lie algebra]]s gives rise to a large class of previously unknown identities for the eta function. These identities follow from the [[Weyl–Kac character formula]], and more specifically from the so-called "denominator identities". The characters themselves allow the construction of generalizations of the [[Jacobi theta function]] which transform under the [[modular group]]; this is what leads to the identities. An example of one such new identity<ref>{{citation|first=Jurgen|last= Fuchs|title=Affine Lie Algebras and Quantum Groups|year=1992|publisher=Cambridge University Press|isbn=0-521-48412-X}}</ref> is :<math>\eta(8\tau)\eta(16\tau) = \sum_{m,n\in \mathbb{Z} \atop m \le |3n|} (-1)^m q^{(2m+1)^2 - 32n^2} </math> where {{math|''q'' {{=}} ''e''<sup>2''πiτ''</sup>}} is the [[q-analog|{{mvar|q}}-analog]] or "deformation" of the [[highest weight]] of a module. ==Special values== From the above connection with the Euler function together with the special values of the latter, it can be easily deduced that : <math>\begin{align} \eta(i)&=\frac{\Gamma \left(\frac14\right)}{2 \pi ^\frac34} \\[6pt] \eta\left(\tfrac{1}{2}i\right)&=\frac{\Gamma \left(\frac14\right)}{2^\frac78 \pi ^\frac34} \\[6pt] \eta(2i)&=\frac{\Gamma \left(\frac14\right)}{2^\frac{11}{8} \pi ^\frac34} \\[6pt] \eta(3i)&=\frac{\Gamma \left(\frac14\right)}{2\sqrt[3]{3} \left(3+2 \sqrt{3}\right)^\frac{1}{12} \pi ^\frac34} \\[6pt] \eta(4i)&=\frac{\sqrt[4]{-1+\sqrt{2}}\, \Gamma \left(\frac14\right)}{2^\frac{29}{16} \pi ^\frac34} \\[6pt] \eta\left(e^\frac{2 \pi i}{3}\right)&=e^{-\frac{\pi i}{24}} \frac{\sqrt[8]{3} \, \Gamma \left(\frac13\right)^\frac32}{2 \pi } \end{align}</math> ==Eta quotients== Eta quotients are defined by quotients of the form :<math> \prod_{0<d\mid N}\eta(d\tau)^{r_d} </math> where {{mvar|d}} is a non-negative integer and {{mvar|r<sub>d</sub>}} is any integer. Linear combinations of eta quotients at imaginary quadratic arguments may be [[algebraic number|algebraic]], while combinations of eta quotients may even be [[integer|integral]]. For example, define, :<math>\begin{align} j(\tau)&=\left(\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^{8}+2^8 \left(\frac{\eta(2\tau)}{\eta(\tau)}\right)^{16}\right)^3 \\[6pt] j_{2A}(\tau)&=\left(\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^{12}+2^6 \left(\frac{\eta(2\tau)}{\eta(\tau)}\right)^{12}\right)^2 \\[6pt] j_{3A}(\tau) &=\left(\left(\frac{\eta(\tau)}{\eta(3\tau)}\right)^{6}+3^3 \left(\frac{\eta(3\tau)}{\eta(\tau)}\right)^{6}\right)^2 \\[6pt] j_{4A}(\tau) &=\left(\left(\frac{\eta(\tau)}{\eta(4\tau)}\right)^{4} + 4^2 \left(\frac{\eta(4\tau)}{\eta(\tau)}\right)^{4}\right)^2 = \left(\frac{\eta^2(2\tau)}{\eta(\tau)\,\eta(4\tau)} \right)^{24} \end{align}</math> with the 24th power of the [[Weber modular function]] {{math|𝔣(''τ'')}}. Then, :<math>\begin{align} j\left(\frac{1+\sqrt{-163}}{2}\right) &= -640320^3, & e^{\pi\sqrt{163}} &\approx 640320^3+743.99999999999925\dots \\[6pt] j_{2A}\left(\frac{\sqrt{-58}}{2}\right) &= 396^4, & e^{\pi\sqrt{58}}&\approx 396^4-104.00000017\dots \\[6pt] j_{3A}\left(\frac{1+\sqrt{-\frac{89}{3}}}{2}\right) &= -300^3, & e^{\pi\sqrt\frac{89}{3}}&\approx 300^3+41.999971\dots \\[6pt] j_{4A}\left(\frac{\sqrt{-7}}{2}\right)&=2^{12}, & e^{\pi\sqrt{7}}&\approx 2^{12}-24.06\dots \end{align}</math> and so on, values which appear in [[Ramanujan–Sato series]]. Eta quotients may also be a useful tool for describing bases of [[modular form]]s, which are notoriously difficult to compute and express directly. In 1993 Basil Gordon and Kim Hughes proved that if an eta quotient {{mvar|η<sub>g</sub>}} of the form given above, namely <math> \prod_{0<d\mid N}\eta(d\tau)^{r_d} </math> satisfies :<math> \sum_{0<d\mid N}d r_d \equiv 0 \pmod{24} \quad \text{and} \quad \sum_{0<d\mid N}\frac{N}{d}r_d \equiv 0 \pmod{24},</math> then {{mvar|η<sub>g</sub>}} is a [[modular form|weight {{mvar|k}} modular form]] for the [[congruence subgroup]] {{math|Γ<sub>0</sub>(''N'')}} (up to [[Holomorphic function|holomorphicity]]) where<ref>{{cite book|first1=Basil |last1=Gordon |first2=Kim |last2=Hughes |contribution=Multiplicative properties of ''η''-products. II. |title=A Tribute to Emil Grosswald: Number Theory and Related Analysis |volume=143 |series=Contemporary Mathematics |page=415–430 |publisher=American Mathematical Society |location=Providence, RI |date=1993}}</ref> :<math>k=\frac12\sum_{0<d\mid N} r_d.</math> This result was extended in 2019 such that the converse holds for cases when {{mvar|N}} is [[Coprime integers|coprime]] to 6, and it remains open that the original theorem is sharp for all integers {{mvar|N}}.<ref name="AAHOS">{{cite journal|first1=Michael |last1=Allen|first2=Nicholas |last2=Anderson|first3=Asimina |last3=Hamakiotes|first4=Ben |last4=Oltsik|first5=Holly |last5=Swisher|title=Eta-quotients of prime or semiprime level and elliptic curves|journal=Involve|year=2020|volume=13|issue=5|pages=879–900 |doi=10.2140/involve.2020.13.879|arxiv=1901.10511|s2cid=119620241 }}</ref> This also extends to state that any [[modular form|modular eta quotient]] for any [[Congruence subgroup| level {{mvar|n}} congruence subgroup]] must also be a modular form for the group {{math|Γ(''N'')}}. While these theorems characterize [[Modular form|modular]] eta quotients, the condition of [[Holomorphic function| holomorphicity]] must be checked separately using a theorem that emerged from the work of Gérard Ligozat<ref>{{cite book|first=G. |last=Ligozat |title=Courbes modulaires de genre 1 |publisher=U.E.R. Mathématique, Université Paris XI, Orsay |date=1974 |series=Publications Mathématiques d'Orsay |volume=75 |page=7411}}</ref> and Yves Martin:<ref>{{cite journal|first=Yves |last=Martin|title=Multiplicative ''η''-quotients|journal=[[Transactions of the American Mathematical Society]]|year=1996|volume=348|issue=12|page=4825–4856|doi=10.1090/S0002-9947-96-01743-6 |doi-access=free}}</ref> If {{mvar|η<sub>g</sub>}} is an eta quotient satisfying the above conditions for the integer {{mvar|N}} and {{mvar|c}} and {{mvar|d}} are coprime integers, then the order of vanishing at the [[Cusp (singularity)| cusp]] {{math|{{sfrac|''c''|''d''}}}} relative to {{math|Γ<sub>0</sub>(''N'')}} is :<math>\frac{N}{24}\sum_{0<\delta|N} \frac{\gcd\left(d,\delta\right)^2r_\delta}{\gcd\left(d,\frac{N}{\delta}\right)d\delta} .</math> These theorems provide an effective means of creating holomorphic modular eta quotients, however this may not be sufficient to construct a basis for a [[vector space]] of modular forms and [[cusp form|cusp forms]]. A useful theorem for limiting the number of modular eta quotients to consider states that a holomorphic weight {{mvar|k}} modular eta quotient on {{math|Γ<sub>0</sub>(''N'')}} must satisfy :<math>\sum_{0<d\mid N} |r_d|\leq \prod_{p\mid N}\left(\frac{p+1}{p-1}\right)^{\min\bigl(2,\text{ord}_p(N)\bigr)},</math> where {{math|ord<sub>''p''</sub>(''N'')}} denotes the largest integer {{mvar|m}} such that {{mvar|p<sup>m</sup>}} divides {{mvar|N}}.<ref name="RW">{{cite journal|first1=Jeremy |last1=Rouse|first2=John J. |last2=Webb|title=On spaces of modular forms spanned by eta-quotients|journal=[[Advances in Mathematics]]|year=2015|volume=272|page=200–224|doi=10.1016/j.aim.2014.12.002|doi-access=free|arxiv=1311.1460}}</ref> These results lead to several characterizations of spaces of modular forms that can be spanned by modular eta quotients.<ref name="RW"/> Using the [[graded ring]] structure on the ring of modular forms, we can compute bases of vector spaces of modular forms composed of {{math|<math>\mathbb{C}</math>}}-linear combinations of eta-quotients. For example, if we assume {{math|''N'' {{=}} ''pq''}} is a [[semiprime]] then the following process can be used to compute an eta-quotient basis of [[modular form|{{math|''M<sub>k</sub>''(Γ<sub>0</sub>(''N''))}}]].<ref name="AAHOS" /> {{ordered list |Fix a semiprime {{math|''N'' {{=}} ''pq''}} which is coprime to 6 (that is, {{math|''p'', ''q'' > 3}}). We know that any modular eta quotient may be found using the above theorems, therefore it is reasonable to algorithmically to compute them. |Compute the dimension {{mvar|D}} of {{math|''M<sub>k</sub>''(Γ<sub>0</sub>(''N''))}}. This tells us how many linearly-independent modular eta quotients we will need to compute to form a basis. |Reduce the number of eta quotients to consider. For semiprimes we can reduce the number of partitions using the bound on :<math>\sum_{0<d\mid N} |r_d|</math> and by noticing that the sum of the orders of vanishing at the cusps of {{math|Γ<sub>0</sub>(''N'')}} must equal :<math>S:=\frac{(p+1)(q+1)}{6}</math>.<ref name="AAHOS"/> |Find all partitions of {{mvar|S}} into 4-tuples (there are 4 cusps of {{math|Γ<sub>0</sub>(''N'')}}), and among these consider only the partitions which satisfy Gordon and Hughes' conditions (we can convert orders of vanishing into exponents). Each of these partitions corresponds to a unique eta quotient. |Determine the minimum number of terms in the [[modular form|{{mvar|q}}-expansion]] of each eta quotient required to identify elements uniquely (this uses a result known as [[Sturm's bound]]). Then use linear algebra to determine a maximal independent set among these eta quotients. |Assuming that we have not already found {{mvar|D}} linearly independent eta quotients, find an appropriate vector space {{math|''M''<sub>''k''{{prime}}</sub>(Γ<sub>0</sub>(''N''))}} such that {{math|''k''{{prime}}}} and {{math|''M''<sub>''k''{{prime}}</sub>(Γ<sub>0</sub>(''N''))}} is spanned by ([[Weakly holomorphic modular form|weakly holomorphic]]) eta quotients,<ref name="RW"/> and {{math|''M''<sub>''k''{{prime}}−''k''</sub>(Γ<sub>0</sub>(''N''))}} contains an eta quotient {{mvar|η<sub>g</sub>}}. |Take a modular form {{mvar|f}} with weight {{mvar|k}} that is not in the span of our computed eta quotients, and compute {{math|''f'' ''η<sub>g</sub>''}} as a linear combination of eta-quotients in {{math|''M''<sub>''k''{{prime}}</sub>(Γ<sub>0</sub>(''N''))}} and then divide out by {{mvar|η<sub>g</sub>}}. The result will be an expression of {{mvar|f}} as a linear combination of eta quotients as desired. Repeat this until a basis is formed. }} A collection of over 6300 product identities for the Dedekind eta function in a canonical, standardized form is available at the Wayback machine<ref>{{cite web | url=http://eta.math.georgetown.edu/index.html | archive-url=https://web.archive.org/web/20190709153048/http://eta.math.georgetown.edu/index.html | archive-date=2019-07-09 | title=Dedekind Eta Function Product Identities by Michael Somos }}</ref> of Michael Somos' website. ==See also== * [[Chowla–Selberg formula]] * [[Ramanujan–Sato series#Level 2|Ramanujan–Sato series]] * [[q-series]] * [[Weierstrass elliptic function]] * [[Partition function (number theory)|Partition function]] * [[Kronecker limit formula]] * [[Affine Lie algebra]] ==References== <references/> ==Further reading== * {{cite book|first=Tom M. |last=Apostol |title=Modular functions and Dirichlet Series in Number Theory |edition=2nd |series=[[Graduate Texts in Mathematics]] |volume=41 |date=1990 |publisher=Springer-Verlag |isbn=3-540-97127-0 |at=ch. 3}} * {{cite book|first=Neal |last=Koblitz |authorlink=Neal Koblitz |title=Introduction to Elliptic Curves and Modular Forms |edition=2nd |series=Graduate Texts in Mathematics |volume=97 |date=1993 |publisher=Springer-Verlag |isbn=3-540-97966-2}} [[Category:Fractals]] [[Category:Modular forms]] [[Category:Elliptic functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Distinguish
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Ordered list
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)