Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diamond principle
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], and particularly in [[axiomatic set theory]], the '''diamond principle''' {{math|◊}} is a [[combinatorial principle]] introduced by [[Ronald Jensen]] in {{harvtxt|Jensen|1972}} that holds in the [[constructible universe]] ({{math|''L''}}) and that implies the [[continuum hypothesis]]. Jensen extracted the diamond principle from his proof that the [[axiom of constructibility]] ({{math|''V'' {{=}} ''L''}}) implies the existence of a [[Suslin tree]]. == Definitions == The diamond principle {{math|◊}} says that there exists a '''{{vanchor|◊-sequence}}''', a family of sets {{math|''A<sub>α</sub>'' ⊆ ''α''}} for {{math|''α'' < ''ω''<sub>1</sub>}} such that for any subset {{math|''A''}} of [[First uncountable ordinal|ω<sub>1</sub>]] the set of {{math|''α''}} with {{math|''A'' ∩ ''α'' {{=}} ''A<sub>α</sub>''}} is [[Stationary set|stationary]] in {{math|''ω''<sub>1</sub>}}. There are several equivalent forms of the diamond principle. One states that there is a countable collection {{math|'''A'''<sub>''α''</sub>}} of subsets of {{math|''α''}} for each countable ordinal {{math|''α''}} such that for any subset {{math|''A''}} of {{math|''ω''<sub>1</sub>}} there is a stationary subset {{math|''C''}} of {{math|''ω''<sub>1</sub>}} such that for all {{math|''α''}} in {{math|''C''}} we have {{math|''A'' ∩ ''α'' ∈ '''A'''<sub>''α''</sub>}} and {{math|''C'' ∩ ''α'' ∈ '''A'''<sub>''α''</sub>}}. Another equivalent form states that there exist sets {{math|''A''<sub>''α''</sub> ⊆ ''α''}} for {{math|''α'' < ''ω''<sub>1</sub>}} such that for any subset {{mvar|''A''}} of {{mvar|''ω''<sub>1</sub>}} there is at least one infinite {{mvar|''α''}} with {{mvar|''A'' ∩ ''α'' {{=}} ''A''<sub>''α''</sub>}}. More generally, for a given [[cardinal number]] {{math|''κ''}} and a [[stationary set]] {{math|''S'' ⊆ ''κ''}}, the statement {{math|◊<sub>''S''</sub>}} (sometimes written {{math|◊(''S'')}} or {{math|◊<sub>''κ''</sub>(''S'')}}) is the statement that there is a [[sequence]] {{math|⟨''A<sub>α</sub>'' : ''α'' ∈ ''S''⟩}} such that * each {{math|''A<sub>α</sub>'' ⊆ ''α''}} * for every {{math|''A'' ⊆ ''κ''}}, {{math|{''α'' ∈ ''S'' : ''A'' ∩ ''α'' {{=}} ''A<sub>α</sub>''<nowiki>}</nowiki>}} is stationary in {{math|''κ''}} The principle {{math|◊<sub>''ω''<sub>1</sub></sub>}} is the same as {{math|◊}}. The diamond-plus principle {{math|◊<sup>+</sup>}} states that there exists a '''{{math|◊<sup>+</sup>}}-sequence''', in other words a countable collection {{math|'''A'''<sub>''α''</sub>}} of subsets of {{math|''α''}} for each countable ordinal α such that for any subset {{math|''A''}} of {{math|''ω''<sub>1</sub>}} there is a closed unbounded subset {{math|''C''}} of {{math|''ω''<sub>1</sub>}} such that for all {{math|''α''}} in {{math|''C''}} we have {{math|''A'' ∩ ''α'' ∈ '''A'''<sub>''α''</sub>}} and {{math|''C'' ∩ ''α'' ∈ '''A'''<sub>''α''</sub>}}. == Properties and use == {{harvtxt|Jensen|1972}} showed that the diamond principle {{math|◊}} implies the existence of [[Suslin tree]]s. He also showed that {{math|[[V=L|''V'' {{=}} ''L'']]}} implies the diamond-plus principle, which implies the diamond principle, which implies [[continuum hypothesis|CH]]. In particular the diamond principle and the diamond-plus principle are both [[Independence (mathematical logic)|independent]] of the axioms of [[ZFC]]. Also {{math|[[clubsuit|♣]] + CH}} implies {{math|◊}}, but [[Saharon Shelah|Shelah]] gave models of {{math|♣ + ¬ CH}}, so {{math|◊}} and {{math|♣}} are not equivalent (rather, {{math|♣}} is weaker than {{math|◊}}). Matet proved the principle <math>\diamondsuit_\kappa</math> equivalent to a property of partitions of <math>\kappa</math> with diagonal intersection of initial segments of the partitions stationary in <math>\kappa</math>.<ref>P. Matet, "[https://eudml.org/doc/211737 On diamond sequences]". Fundamenta Mathematicae vol. 131, iss. 1, pp.35--44 (1988)</ref> The diamond principle {{math|◊}} does not imply the existence of a [[Kurepa tree]], but the stronger {{math|◊<sup>+</sup>}} principle implies both the {{math|◊}} principle and the existence of a Kurepa tree. {{harvtxt|Akemann|Weaver|2004}} used {{math|◊}} to construct a [[C*-algebra|{{math|''C''*}}-algebra]] serving as a [[counterexample]] to [[Naimark's problem]]. For all cardinals {{math|''κ''}} and [[stationary subset]]s {{math|''S'' ⊆ ''κ''<sup>+</sup>}}, {{math|◊<sub>''S''</sub>}} holds in the [[constructible universe]]. {{harvtxt|Shelah|2010}} proved that for {{math|''κ'' > ℵ<sub>0</sub>}}, {{math|◊<sub>''κ''<sup>+</sup></sub>(''S'')}} follows from {{math|2<sup>''κ''</sup> {{=}} ''κ''<sup>+</sup>}} for stationary {{math|''S''}} that do not contain ordinals of cofinality {{math|''κ''}}. Shelah showed that the diamond principle solves the [[Whitehead problem]] by implying that every [[Whitehead problem|Whitehead group]] is free. == See also == * [[List of statements independent of ZFC]] * [[Statements true in L|Statements true in {{mvar|L}}]] == References == {{refbegin|30em}} *{{cite journal |last1=Akemann |first1=Charles |last2=Weaver |first2=Nik |year=2004 |title=Consistency of a counterexample to Naimark's problem |journal=[[Proceedings of the National Academy of Sciences]] |doi=10.1073/pnas.0401489101 |mr=2057719 |pmid=15131270 |pmc=419638 |arxiv=math.OA/0312135 |bibcode=2004PNAS..101.7522A |volume=101 |issue=20 |pages=7522–7525|doi-access=free }} *{{cite journal |last1=Jensen |first1=R. Björn |year=1972 |title=The fine structure of the constructible hierarchy |journal=Annals of Mathematical Logic |doi=10.1016/0003-4843(72)90001-0 |doi-access=free |mr=0309729 |volume=4 |issue=3 |pages=229–308}} *{{cite book |last=Rinot |first=Assaf |year=2011 |title=Set theory and its applications |chapter=Jensen's diamond principle and its relatives |series=Contemporary Mathematics |publisher=AMS |location=Providence, RI |isbn=978-0-8218-4812-8 |mr=2777747 |arxiv=0911.2151 |bibcode=2009arXiv0911.2151R |volume=533 |pages=125–156 |url=http://papers.assafrinot.com/?num=s01}} *{{cite journal |last=Shelah |first=Saharon |author-link=Saharon Shelah |year=1974 |title=Infinite Abelian groups, Whitehead problem and some constructions |journal=[[Israel Journal of Mathematics]] |doi=10.1007/BF02757281 |doi-access= |s2cid=123351674 |mr=0357114 |volume=18 |issue=3 |pages=243–256}} *{{cite journal |last=Shelah |first=Saharon |author-link=Saharon Shelah |year=2010 |title=Diamonds |journal=[[Proceedings of the American Mathematical Society]] |doi=10.1090/S0002-9939-10-10254-8 |doi-access=free |volume=138 |issue=6 |pages=2151–2161}} {{refend}} === Citations === {{reflist}} [[Category:Set theory]] [[Category:Mathematical principles]] [[Category:Independence results]] [[Category:Constructible universe]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Harvtxt
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Vanchor
(
edit
)