Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diamondoid
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Various forms of carbon crystal lattices}} In chemistry, '''diamondoids''' are generalizations of the [[carbon]] cage molecule known as [[adamantane]] (C<sub>10</sub>H<sub>16</sub>), the smallest unit cage structure of the [[diamond]] [[crystal lattice]]. Diamondoids also known as '''nanodiamonds''' or '''condensed adamantanes''' may include one or more cages (adamantane, [[diamantane]], [[triamantane]], and higher polymantanes) as well as numerous isomeric and structural variants of adamantanes and polymantanes. These diamondoids occur naturally in [[petroleum]] deposits and have been extracted and purified into large pure crystals of polymantane molecules having more than a dozen adamantane cages per molecule.<ref name="Dahl">{{cite journal |title= Isolation and Structure of Higher Diamondoids, Nanometer-Sized Diamond Molecules |first1= J. E. |last1= Dahl |first2= S. G. |last2= Liu |first3= R. M. K. |last3= Carlson |journal= [[Science (journal)|Science]] |date= 3 January 2003 |volume= 299 |number= 5603 |pages= 96–99 |doi= 10.1126/science.1078239 |pmid=12459548|s2cid= 46688135 |doi-access= free }}</ref> These species are of interest as molecular approximations of the [[diamond cubic]] framework, terminated with C−H bonds. ==Examples== [[File:Diamondoids.png|center|400px|Diamondoids, from left to right [[adamantane]], [[diamantane]], [[triamantane]] and one isomer of [[tetramantane]]]] Examples include: * [[Adamantane]] (C<sub>10</sub>H<sub>16</sub>) * [[Iceane]] (C<sub>12</sub>H<sub>18</sub>) * BC-8 (C<sub>14</sub>H<sub>20</sub>) * [[Diamantane]] (C<sub>14</sub>H<sub>20</sub>) also ''diadamantane'', two face-fused cages * Triamantane (C<sub>18</sub>H<sub>24</sub>), also ''triadamantane''. Diamantane has four identical faces available for anchoring a new C<sub>4</sub>H<sub>4</sub> unit. * Isotetramantane (C<sub>22</sub>H<sub>28</sub>). Triamantane has eight faces on to which a new C<sub>4</sub>H<sub>4</sub> unit can be added resulting in four [[isomer]]s. One of these isomers displays a helical twist and is therefore [[prochiral]]. The [[Axial chirality|''P'' and ''M'']] [[enantiomer]]s have been separated. * Pentamantane has nine isomers with chemical formula C<sub>26</sub>H<sub>32</sub> and one more pentamantane exists with chemical formula C<sub>25</sub>H<sub>30</sub> * Cyclohexamantane (C<sub>26</sub>H<sub>30</sub>)<ref>{{cite journal |first1=J. E. P. |last1=Dahl |first2=J. M. |last2=Moldowan |first3=T. M. |last3=Peakman |first4=J. C. |last4=Clardy |first5=E. |last5=Lobkovsky |first6=M. M. |last6=Olmstead |first7=P. W. |last7=May |first8=T. J. |last8=Davis |first9=J. W. |last9=Steeds |first10=K. E. |last10=Peters |first11=A. |last11=Pepper |first12=A. |last12=Ekuan |first13=R. M. K. |last13=Carlson | title= Isolation and Structural Proof of the Large Diamond Molecule, Cyclohexamantane (C<sub>26</sub>H<sub>30</sub>) | journal= Angewandte Chemie International Edition | year= 2003 | volume= 42 | pages= 2040–2044 |doi= 10.1002/anie.200250794 | pmid= 12746817 | issue= 18}}</ref> * Super-adamantane (C<sub>30</sub>H<sub>36</sub>) One tetramantane isomer is the largest ever diamondoid prepared by [[organic synthesis]] using a keto-[[carbenoid]] reaction to attach cyclopentane rings.<ref>{{cite journal | title=A New Approach to the Construction of Diamondoid Hydrocarbons. Synthesis of ''anti''-Tetramantane |last1=Burns |first1=W. |last2=McKervey |first2=M. A. |last3=Mitchell |first3=T. R. |last4=Rooney |first4=J. J. | journal= Journal of the American Chemical Society | volume=100 |issue=3 | pages=906–911 |year=1978 | doi=10.1021/ja00471a041}}</ref> Longer diamondoids have been formed from diamantane dicarboxylic acid.<ref>{{cite journal | journal= Angewandte Chemie International Edition | date= Mar 25, 2013 |volume=52 |issue=13 | pages=3717–3721 | title=Evidence of diamond nanowires formed inside carbon nanotubes from diamantane dicarboxylic acid |last1=Zhang |first1=J. |last2=Zhu |first2=Z. |last3=Feng |first3=Y. |last4=Ishiwata |first4=H. |last5=Miyata |first5=Y. |last6=Kitaura |first6=R. |last7=Dahl |first7=J. E. |last8=Carlson |first8=R. M. |last9=Fokina |first9=N. A. |last10=Schreiner |first10=P. R. |last11=Tománek |first11=D. |last12=Shinohara |first12=H. | pmid=23418054 | doi=10.1002/anie.201209192}}</ref> The first-ever isolation of a wide range of diamondoids from petroleum took place in the following steps:<ref name="Dahl"/> a [[vacuum distillation]] above 345 °C, the equivalent [[atmospheric boiling point]], then [[pyrolysis]] at 400 to 450 °C in order to remove all non-diamondoid compounds (diamondoids are thermodynamically very stable and will survive this pyrolysis) and then a series of [[high-performance liquid chromatography]] separation techniques. In one study a tetramantane compound is fitted with [[thiol]] groups at the bridgehead positions.<ref>{{cite journal|title=Functionalized Nanodiamonds Part 3: Thiolation of Tertiary/Bridgehead Alcohols|first1= Boryslav A.|last1= Tkachenko|first2= Natalie A.|last2= Fokina|first3= Lesya V.|last3= Chernish|first4= Jeremy E. P.|last4= Dahl|first5= Shenggao|last5= Liu|first6= Robert M. K.|last6= Carlson|first7= Andrey A.|last7= Fokin|first8= Peter R.|last8= Schreiner|journal= Organic Letters |date=2006 |volume=8 |issue=9 |pages= 1767–70|doi=10.1021/ol053136g |pmid= 16623546}}</ref> This allows their anchorage to a [[gold]] surface and formation of [[self-assembled monolayer]]s (diamond-on-gold). Organic chemistry of diamondoids even extends to ''pentamantane''.<ref>{{cite journal | last1 = Fokin | first1 = Andrey A. | last2 = Schreiner | first2 = Peter R. | last3 = Fokina | first3 = Natalie A. | last4 = Tkachenko | first4 = Boryslav A. | last5 = Hausmann | first5 = Heike | last6 = Serafin | first6 = Michael | last7 = Dahl | first7 = Jeremy E. P. | last8 = Liu | first8 = Shenggao | last9 = Carlson | first9 = Robert M. K. | year = 2006 | title = Reactivity of [1(2,3)4]Pentamantane (Td-Pentamantane): A Nanoscale Model of Diamond | journal = The Journal of Organic Chemistry | volume = 71 | issue = 22| pages = 8532–8540 | doi = 10.1021/jo061561x | pmid = 17064030 }}</ref> The medial position (base) in this molecule (the isomer [1(2,3)4]pentamantane) is calculated to yield a more favorable [[carbocation]] than the apical position (top) and simple [[bromination]] of pentamantane ''1'' with [[bromine]] exclusively gives the medial bromo derivative ''2'' which on hydrolysis in water and [[dimethylformamide|DMF]] forms the [[Alcohol (chemistry)|alcohol]] ''3''. [[File:PentamaneChemistry.png|center|400px|Pentamane chemistry]] In contrast [[nitrooxylation]] of ''1'' with [[nitric acid]] gives the apical [[nitrate]] ''4'' as an intermediate which is hydrolysed to the apical [[Alcohol (chemistry)|alcohol]] ''5'' due to the higher [[steric hindrance|steric demand]] of the active [[electrophilic]] {{chem|NO|2|-}}{{chem|HNO|3|+}} species. This alcohol can react with [[thionyl bromide]] to the bromide ''6'' and in a series of steps (not shown) to the corresponding [[thiol]]. Pentamantane can also react with [[tetrabromomethane]] and [[Quaternary ammonium cation|tetra-''n''-butylammonium]] bromide (TBABr) in a [[free radical reaction]] to the bromide but without selectivity. == Origin and occurrence == Diamondoids are found in mature high-temperature [[petroleum]] fluids (volatile oils, condensates and wet gases). These fluids can have up to a spoonful of diamondoids per US gallon (3.78 liters). A review by Mello and Moldowan in 2005 showed that although the carbon in diamonds is not biological in origin, the diamondoids found in [[petroleum]] are composed of carbon from biological sources. This was determined by comparing the ratios of carbon [[isotope]]s present.<ref>{{cite web|url=http://www.searchanddiscovery.net/documents/abstracts/2005research_calgary/abstracts/extended/mello/mello.htm|website=Search and Discovery|title=Petroleum: To Be Or Not To Be Abiogenic |first1=M. R. |last1=Mello |first2=J. M. |last2=Moldowan |date=2005}}</ref> == Optical and electronic properties == The [[Absorption (electromagnetic radiation)|optical absorption]] for all diamondoids lies deep in the [[ultraviolet]] spectral region with optical [[band gap]]s around 6 [[electronvolt]]s and higher.<ref>{{cite journal |first1=L. |last1=Landt |first2=K. |last2=Klünder |first3=J. E. |last3=Dahl |first4=R. M. K. |last4=Carlson |first5=T. |last5=Möller |first6=C. |last6=Bostedt | title= Optical Response of Diamond Nanocrystals as a Function of Particle Size, Shape, and Symmetry | journal= Physical Review Letters | year= 2009 | volume= 103 |issue=4 | pages= 047402 |doi= 10.1103/PhysRevLett.103.047402 | bibcode=2009PhRvL.103d7402L | pmid=19659398|url=http://bib-pubdb1.desy.de/record/92624 }}</ref> The spectrum of each diamondoid is found to reflect its individual size, shape and [[molecular symmetry|symmetry]]. Due to their well-defined size and structure diamondoids also serve as a model system for electronic structure calculations.<ref>{{cite journal |first1=M. |last1=Vörös |first2=A. |last2=Gali | title= Optical absorption of diamond nanocrystals from ''ab initio'' density-functional calculations | journal= Physical Review B | year= 2009 | volume= 80 |issue=16 | pages= 161411 |doi= 10.1103/PhysRevB.80.161411|bibcode = 2009PhRvB..80p1411V }}</ref> Many of the optoelectronic properties of diamondoids are determined by the difference in the nature of the [[HOMO/LUMO|highest occupied and lowest unoccupied molecular orbitals]]: the former is a [[bulk state]], whereas the latter is a [[surface state]]. As a result, the energy of the lowest unoccupied molecular orbital is roughly independent of the size of the diamondoid.<ref name="dmc_diamondoid">{{cite journal |first1=N. D. |last1=Drummond |first2=A. J. |last2=Williamson |first3=R. J. |last3=Needs |first4=G. |last4=Galli | title= Electron emission from diamondoids: a diffusion quantum Monte Carlo study | journal= Physical Review Letters | year= 2005 | volume= 95 |issue=9 | pages= 096801–096804 |doi= 10.1103/PhysRevLett.95.096801 | bibcode=2005PhRvL..95i6801D|arxiv = 0801.0381 | pmid=16197235|s2cid=16703233 }}</ref><ref>{{cite journal |first1=T. M. |last1=Willey |first2=C. |last2=Bostedt |first3=T. |last3=van Buuren |first4=J. E. |last4=Dahl |first5=S. G. |last5=Liu |first6=R. M. K. |last6=Carlson |first7=L. J. |last7=Terminello |first8=T. |last8=Möller | title= Molecular Limits to the Quantum Confinement Model in Diamond Clusters | journal= Physical Review Letters | year= 2005 | volume= 95 |issue=11 | pages= 113401–113404 |doi= 10.1103/PhysRevLett.95.113401 | bibcode=2005PhRvL..95k3401W | pmid=16197003|url=https://digital.library.unt.edu/ark:/67531/metadc876588/ |type=Submitted manuscript }}</ref> Diamondoids have been found to exhibit a negative [[electron affinity]], making them potentially useful in [[Field electron emission|electron-emission]] devices.<ref name="dmc_diamondoid" /><ref>{{cite journal |first1=W. L. |last1=Yang |first2=J. D. |last2=Fabbri |first3=T. M. |last3=Willey |first4=J. R. I. |last4=Lee |first5=J. E. |last5=Dahl |first6=R. M. K. |last6=Carlson |first7=P. R. |last7=Schreiner |first8=A. A. |last8=Fokin |first9=B. A. |last9=Tkachenko |first10=N. A. |last10=Fokina |first11=W. |last11=Meevasana |first12=N. |last12=Mannella |first13=K. |last13=Tanaka |first14=X.-J. |last14=Zhou |first15=T. |last15=van Buuren |first16=M. A. |last16=Kelly |first17=Z. |last17=Hussain |first18=N. A. |last18=Melosh |first19=Z.-X. |last19=Shen | title= Monochromatic Electron Photoemission from Diamondoid Monolayers | journal= Science | year= 2007 | volume= 316 |issue=5830 | pages= 1460–1462 |doi= 10.1126/science.1141811 |pmid=17556579 |bibcode = 2007Sci...316.1460Y |url=https://cloudfront.escholarship.org/dist/prd/content/qt5h79b9nr/qt5h79b9nr.pdf |doi-access=free }}</ref> ==See also== * Other diamond-like compounds: [[Boron nitride]] * [[Abiogenic petroleum origin]] * [[Nanorobot]] ==References== {{reflist|30em}} ==External links== * [http://www.cluster-ag.tu-berlin.de/menue/research/diamondoids/ Cluster and Nanocrystal Research Group, Technische Universität Berlin] * [https://web.archive.org/web/20060826183233/http://www.chevron.com/moleculardiamond/diamondtech/discovery.asp Molecular Diamond Technologies, Chevron Texaco] * [https://web.archive.org/web/20060925014642/http://www.dse.nl/~hkl/e_nano1.htm Nanotechnology and the arrival of the Diamond Age] * [http://www.chm.bris.ac.uk/pt/diamond/diamondoids.htm Laser Raman Spectroscopy and Modelling of Diamondoids] * [http://opus.kobv.de/tuberlin/volltexte/2010/2855/pdf/landt_lasse.pdf Electronic and Optical Properties of Diamondoids (free download)] * [http://www.worldscientific.com/worldscibooks/10.1142/7559 Diamondoid Molecules: With Applications in Biomedicine, Materials Science, Nanotechnology & Petroleum Science] * [http://pubs.rsc.org/is/content/articlehtml/2016/nr/c6nr00500d Diamondoid-functionalized gold nanogaps as sensors for natural, mutated, and epigenetically modified DNA nucleotides] [[Category:Carbon nanoparticles]] [[Category:Adamantane-like molecules]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Chem
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)