Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Differintegral
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{redirect-distinguish|Fractional integration|Autoregressive fractionally integrated moving average}} {{Calculus|expanded=Specialized calculi}} In [[fractional calculus]], an area of [[mathematical analysis]], the '''differintegral''' is a combined [[Differential operator|differentiation]]/[[integral operator|integration]] operator. Applied to a [[function (mathematics)|function]] ƒ, the ''q''-differintegral of ''f'', here denoted by :<math>\mathbb{D}^q f</math> is the [[Fractional_calculus#Historical_notes|fractional derivative]] (if ''q'' > 0) or [[Fractional_calculus#Fractional_integrals|fractional integral]] (if ''q'' < 0). If ''q'' = 0, then the ''q''-th differintegral of a function is the function itself. In the context of fractional integration and differentiation, there are several definitions of the differintegral. ==Standard definitions== The four most common forms are: *The [[Riemann–Liouville differintegral]]{{pb}}This is the simplest and easiest to use, and consequently it is the most often used. It is a generalization of the [[Cauchy formula for repeated integration]] to arbitrary order. Here, <math>n = \lceil q \rceil</math>. <math display="block"> \begin{align} {}^{RL}_a\mathbb{D}^q_tf(t) & = \frac{d^qf(t)}{d(t-a)^q} \\ & =\frac{1}{\Gamma(n-q)} \frac{d^n}{dt^n} \int_{a}^t (t-\tau)^{n-q-1}f(\tau)d\tau \end{align}</math> *The [[Grunwald–Letnikov differintegral]]{{pb}}The Grunwald–Letnikov differintegral is a direct generalization of the definition of a [[derivative]]. It is more difficult to use than the Riemann–Liouville differintegral, but can sometimes be used to solve problems that the Riemann–Liouville cannot. <math display="block">\begin{align} {}^{GL}_a\mathbb{D}^q_tf(t) & = \frac{d^qf(t)}{d(t-a)^q} \\ & =\lim_{N \to \infty}\left[\frac{t-a}{N}\right]^{-q}\sum_{j=0}^{N-1}(-1)^j{q \choose j}f\left(t-j\left[\frac{t-a}{N}\right]\right) \end{align}</math> *The [[Weyl differintegral]]{{pb}} This is formally similar to the Riemann–Liouville differintegral, but applies to [[periodic function]]s, with integral zero over a period. *The [[Caputo differintegral]]{{pb}}In opposite to the Riemann-Liouville differintegral, Caputo derivative of a constant <math>f(t)</math> is equal to zero. Moreover, a form of the Laplace transform allows to simply evaluate the initial conditions by computing finite, integer-order derivatives at point <math>a</math>. <math display="block">\begin{align} {}^{C}_a\mathbb{D}^q_tf(t) & = \frac{d^qf(t)}{d(t-a)^q} \\ & =\frac{1}{\Gamma(n-q)} \int_{a}^t \frac{f^{(n)}(\tau)}{(t-\tau)^{q-n+1}}d\tau \end{align}</math> ==Definitions via transforms== The definitions of fractional derivatives given by Liouville, Fourier, and Grunwald and Letnikov coincide.<ref>{{cite book |url=https://books.google.com/books?id=mPXzp1f7ycMC&pg=PA11 |first=Richard |last=Herrmann|title=Fractional Calculus: An Introduction for Physicists |year=2011 |isbn=9789814551076 }}</ref> They can be represented via Laplace, Fourier transforms or via Newton series expansion. Recall the [[continuous Fourier transform]], here denoted <math> \mathcal{F}</math>: <math display="block"> F(\omega) = \mathcal{F}\{f(t)\} = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t) e^{- i\omega t}\,dt </math> Using the continuous Fourier transform, in Fourier space, differentiation transforms into a multiplication: <math display="block">\mathcal{F}\left[\frac{df(t)}{dt}\right] = i \omega \mathcal{F}[f(t)]</math> So, <math display="block">\frac{d^nf(t)}{dt^n} = \mathcal{F}^{-1}\left\{(i \omega)^n\mathcal{F}[f(t)]\right\}</math> which generalizes to <math display="block">\mathbb{D}^qf(t) = \mathcal{F}^{-1}\left\{(i \omega)^q\mathcal{F}[f(t)]\right\}.</math> Under the [[bilateral Laplace transform]], here denoted by <math> \mathcal{L}</math> and defined as <math display="inline"> \mathcal{L}[f(t)] =\int_{-\infty}^\infty e^{-st} f(t)\, dt</math>, differentiation transforms into a multiplication <math display="block">\mathcal{L}\left[\frac{df(t)}{dt}\right] = s\mathcal{L}[f(t)].</math> Generalizing to arbitrary order and solving for <math> \mathbb{D}^qf(t)</math>, one obtains <math display="block">\mathbb{D}^qf(t)=\mathcal{L}^{-1}\left\{s^q\mathcal{L}[f(t)]\right\}.</math> Representation via Newton series is the Newton interpolation over consecutive integer orders: <math display="block">\mathbb{D}^qf(t) =\sum_{m=0}^{\infty} \binom {q}m \sum_{k=0}^m\binom mk(-1)^{m-k}f^{(k)}(x).</math> For fractional derivative definitions described in this section, the following identities hold: :<math>\mathbb{D}^q(t^n)=\frac{\Gamma(n+1)}{\Gamma(n+1-q)}t^{n-q}</math> :<math>\mathbb{D}^q(\sin(t))=\sin \left( t+\frac{q\pi}{2} \right) </math> :<math>\mathbb{D}^q(e^{at})=a^q e^{at}</math><ref>See {{cite book |page=16 |url=https://books.google.com/books?id=mPXzp1f7ycMC&pg=PA11 |first=Richard |last=Herrmann|title=Fractional Calculus: An Introduction for Physicists | year=2011 |isbn=9789814551076 }}</ref> ==Basic formal properties== *''[[Linear operator|Linearity]] rules'' <math display="block">\mathbb{D}^q(f+g) = \mathbb{D}^q(f)+\mathbb{D}^q(g)</math> <math display="block">\mathbb{D}^q(af) = a\mathbb{D}^q(f)</math> *''Zero rule'' <math display="block">\mathbb{D}^0 f = f </math> *''Product rule'' <math display="block">\mathbb{D}^q_t(fg) = \sum_{j=0}^{\infty} {q \choose j}\mathbb{D}^j_t(f)\mathbb{D}^{q-j}_t(g)</math> In general, ''composition (or [[semigroup]]) rule'' is a desirable property, but is hard to achieve mathematically and hence is '''not always completely satisfied''' by each proposed operator;<ref>See {{cite book |page=75 |chapter=2. Fractional Integrals and Fractional Derivatives §2.1 Property 2.4 |chapter-url=https://books.google.com/books?id=uxANOU0H8IUC&pg=PA75 |first1=A. A. |last1=Kilbas |first2=H. M. |last2=Srivastava |first3=J. J. |last3=Trujillo |title=Theory and Applications of Fractional Differential Equations |publisher=Elsevier |year=2006 |isbn=9780444518323 }}</ref> this forms part of the decision making process on which one to choose: * <math display="inline">\mathbb{D}^a\mathbb{D}^{b}f = \mathbb{D}^{a+b}f</math> (ideally) * <math display="inline">\mathbb{D}^a\mathbb{D}^{b}f \neq \mathbb{D}^{a+b}f</math> (in practice) ==See also== * [[Fractional-order integrator]] ==References== {{Reflist}} {{refbegin}} *{{cite book |first=Kenneth S. |last=Miller |editor-first=Bertram |editor-last=Ross |title=An Introduction to the Fractional Calculus and Fractional Differential Equations |publisher=Wiley |year=1993 |isbn=0-471-58884-9 }} *{{cite book |first1=Keith B. |last1=Oldham |first2=Jerome |last2=Spanier |title=The Fractional Calculus; Theory and Applications of Differentiation and Integration to Arbitrary Order |publisher=Academic Press |series=Mathematics in Science and Engineering |volume=V |year=1974 |isbn=0-12-525550-0 }} *{{cite book |first=Igor |last=Podlubny |title=Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications |publisher=Academic Press |series=Mathematics in Science and Engineering |volume=198 |year=1998 |isbn=0-12-558840-2 }} *{{cite book |editor-first=A. |editor-last=Carpinteri |editor2-first=F. |editor2-last=Mainardi |title=Fractals and Fractional Calculus in Continuum Mechanics |publisher=Springer-Verlag |year=1998 |isbn=3-211-82913-X }} *{{cite book |first=F. |last=Mainardi |title=Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models |publisher=Imperial College Press |year=2010 |isbn=978-1-84816-329-4 |url=http://www.worldscibooks.com/mathematics/p614.html |archive-url=https://web.archive.org/web/20120519174508/http://www.worldscibooks.com/mathematics/p614.html |url-status=dead |archive-date=2012-05-19 }} *{{cite book |first=V.E. |last=Tarasov |title=Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media |publisher=Springer |year=2010 |isbn=978-3-642-14003-7 |url=https://www.springer.com/physics/complexity/book/978-3-642-14003-7|series=Nonlinear Physical Science }} *{{cite book |first=V.V. |last=Uchaikin |title=Fractional Derivatives for Physicists and Engineers |publisher=Springer |year=2012 |isbn=978-3-642-33910-3 |url=https://www.springer.com/physics/theoretical,+mathematical+%26+computational+physics/book/978-3-642-33910-3|series=Nonlinear Physical Science |bibcode=2013fdpe.book.....U }} *{{cite book |first1=Bruce J. |last1=West |first2=Mauro |last2=Bologna |first3=Paolo |last3=Grigolini |title=Physics of Fractal Operators |publisher=Springer Verlag |year=2003 |isbn=0-387-95554-2 |url=https://books.google.com/books?id=EgyTpQZOga0C&pg=PR7}} {{refend}} ==External links== * [http://mathworld.wolfram.com/FractionalCalculus.html MathWorld – Fractional calculus] *[http://mathworld.wolfram.com/FractionalDerivative.html MathWorld – Fractional derivative] *Specialized journal: [http://www.diogenes.bg/fcaa/ Fractional Calculus and Applied Analysis (1998-2014)] and [http://www.degruyter.com/view/j/fca Fractional Calculus and Applied Analysis (from 2015)] *Specialized journal: [https://archive.today/20120712033445/http://fde.ele-math.com/ Fractional Differential Equations (FDE)] *Specialized journal: [https://web.archive.org/web/20180421124535/http://www.nonlinearscience.com/journal_2218-3892.php Communications in Fractional Calculus] ({{issn|2218-3892}}) * Specialized journal: [http://fcag-egypt.com/Journals/JFCA/ Journal of Fractional Calculus and Applications (JFCA)] *{{cite web |first1=Carl F. |last1=Lorenzo |first2=Tom T. |last2=Hartley |title=Initialized Fractional Calculus |date=2002 |work=Information Technology |publisher=Tech Briefs Media Group |url=https://www.techbriefs.com/component/content/article/tb/techbriefs/information-sciences/2264}} * https://web.archive.org/web/20040502170831/http://unr.edu/homepage/mcubed/FRG.html * [http://www.tuke.sk/podlubny/fc_resources.html Igor Podlubny's collection of related books, articles, links, software, etc. ] *{{cite journal |first=I. |last=Podlubny |title=Geometric and physical interpretation of fractional integration and fractional differentiation |journal=Fractional Calculus and Applied Analysis |volume=5 |issue=4 |pages=367–386 |year=2002 |url=http://www.tuke.sk/podlubny/pspdf/pifcaa_r.pdf |arxiv=math.CA/0110241 |bibcode=2001math.....10241P |access-date=2004-05-18 |archive-date=2006-04-07 |archive-url=https://web.archive.org/web/20060407100616/http://www.tuke.sk/podlubny/pspdf/pifcaa_r.pdf |url-status=dead }} *{{cite journal |first=P. |last=Zavada |title=Operator of fractional derivative in the complex plane |journal= Communications in Mathematical Physics|volume=192 |issue= 2|pages=261–285 |year=1998 |doi=10.1007/s002200050299 |arxiv=funct-an/9608002|bibcode=1998CMaPh.192..261Z |s2cid=1201395 }} [[Category:Fractional calculus]] [[Category:Generalizations of the derivative]] [[Category:Linear operators in calculus]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Bigger
(
edit
)
Template:Calculus
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Endflatlist
(
edit
)
Template:Issn
(
edit
)
Template:Pb
(
edit
)
Template:Redirect-distinguish
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Startflatlist
(
edit
)