Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac comb
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Periodic distribution ("function") of "point-mass" Dirac delta sampling}} {{use dmy dates|date=August 2024}} [[Image:Dirac comb.svg|thumb|300px|The graph of the Dirac comb function is an infinite series of [[Dirac delta function]]s spaced at intervals of ''T'']] In [[mathematics]], a '''Dirac comb''' (also known as '''sha function''', '''impulse train''' or '''sampling function''') is a [[periodic function|periodic]] [[Function (mathematics)|function]] with the formula <math display="block">\operatorname{\text{Ш}}_{\ T}(t) \ := \sum_{k=-\infty}^{\infty} \delta(t - k T) </math> for some given period <math>T</math>.<ref name=":0">{{Cite web |title=The Dirac Comb and its Fourier Transform |url=https://dspillustrations.com/pages/posts/misc/the-dirac-comb-and-its-fourier-transform.html#:~:text=The%20Dirac%20Comb%20function&text=CT(t)=T,(t%E2%88%92nT).&text=As%20shown,%20the%20Dirac%20comb,distinct%20impulses%20are%20T%20apart.&text=or%20equivalently%20as%20a%20sum,%CF%80nt/T). |access-date=2022-06-28 |website=dspillustrations.com}}</ref> Here ''t'' is a real variable and the sum extends over all [[integer]]s ''k.'' The [[Dirac delta function]] <math>\delta</math> and the Dirac comb are [[Distribution_(mathematics)#Tempered_distributions_and_Fourier_transform|tempered distributions]].<ref name="Schwartz 1951">{{cite book|last=Schwartz |first=L. |title=Théorie des distributions |volume=I-II |year=1951 |publisher=Hermann |location=Paris |authorlink=Laurent Schwartz}}</ref><ref name="Strichartz 1994">{{cite book |last=Strichartz |first=R. |title=A Guide to Distribution Theory and Fourier Transforms |year=1994 |publisher=CRC Press |isbn=0-8493-8273-4}}</ref> The graph of the function resembles a [[comb]] (with the <math>\delta</math>s as the comb's ''teeth''), hence its name and the use of the comb-like [[Cyrillic script|Cyrillic]] letter [[Sha (Cyrillic)|sha]] (Ш) to denote the function. The symbol <math>\operatorname{\text{Ш}}\,\,(t)</math>, where the period is omitted, represents a Dirac comb of unit period. This implies<ref name=":0" /> <math display="block">\operatorname{\text{Ш}}_{\ T}(t) \ = \frac{1}{T}\operatorname{\text{Ш}}\ \!\!\!\left(\frac{t}{T}\right).</math> Because the Dirac comb function is periodic, it can be represented as a [[Fourier series]] based on the [[Dirichlet kernel]]:<ref name=":0" /> <math display="block">\operatorname{\text{Ш}}_{\ T}(t) = \frac{1}{T}\sum_{n=-\infty}^{\infty} e^{i 2 \pi n \frac{t}{T}}.</math> The Dirac comb function allows one to represent both [[Continuous function|continuous]] and [[Discrete mathematics|discrete]] phenomena, such as [[sampling (signal processing)|sampling]] and [[aliasing]], in a single framework of [[Fourier transform|continuous Fourier analysis]] on tempered distributions, without any reference to Fourier series. The [[Fourier transform]] of a Dirac comb is another Dirac comb. Owing to the [[Convolution_theorem#Convolution theorem for tempered distributions|Convolution Theorem]] on tempered distributions which turns out to be the [[Poisson summation formula]], in [[signal processing]], the Dirac comb allows modelling sampling by ''[[multiplication]]'' with it, but it also allows modelling periodization by ''[[convolution]]'' with it.<ref name="Bracewell 1986">{{cite book |last1=Bracewell|first1=R. N.|title=The Fourier Transform and Its Applications|publisher=McGraw-Hill|edition=revised| year=1986 |orig-year=1st ed. 1965, 2nd ed. 1978}}</ref> == Dirac-comb identity == The Dirac comb can be constructed in two ways, either by using the ''comb'' [[Operator (mathematics)|operator]] (performing [[sampling (signal processing)|sampling]]) applied to the function that is constantly <math>1</math>, or, alternatively, by using the ''rep'' operator (performing [[periodic summation|periodization]]) applied to the [[Dirac delta]] <math>\delta</math>. Formally, this yields the following:{{sfn|Woodward|1953}}{{sfn|Brandwood|2003}} <math display="block">\operatorname{comb}_T \{1\} = \operatorname{\text{Ш}}_T = \operatorname{rep}_T \{\delta \}, </math> where <math display="block"> \operatorname{comb}_T \{f(t)\} \triangleq \sum_{k=-\infty}^\infty \, f(kT) \, \delta(t - kT) </math> and <math display="block"> \operatorname{rep}_T \{g(t)\} \triangleq \sum_{k=-\infty}^\infty \, g(t - kT). </math> In [[signal processing]], this property on one hand allows [[sampling (signal processing)|sampling]] a function <math>f(t)</math> by ''multiplication'' with <math>\operatorname{\text{Ш}}_{\ T}</math>, and on the other hand it also allows the [[periodic summation|periodization]] of <math>f(t)</math> by ''convolution'' with <math>\operatorname{\text{Ш}}_T</math>.{{sfn|Bracewell|1986}} The Dirac comb identity is a particular case of the [[Convolution_theorem#Convolution theorem for tempered distributions| Convolution Theorem]] for tempered distributions. == Scaling == The scaling property of the Dirac comb follows from the properties of the [[Dirac delta function]]. Since <math>\delta(t) = \frac{1}{a}\ \delta\!\left(\frac{t}{a}\right)</math><ref name="Rahman 2011">{{cite book | first=M.| last=Rahman | year=2011|title=Applications of Fourier Transforms to Generalized Functions|publisher=WIT Press |location=Southampton |isbn=978-1-84564-564-9}}</ref> for positive real numbers <math>a</math>, it follows that: <math display="block"> \operatorname{\text{Ш}}_{\ T}\left(t\right) = \frac{1}{T} \operatorname{\text{Ш}}\,\!\left( \frac{t}{T} \right), </math> <math display="block">\operatorname{\text{Ш}}_{\ aT}\left(t\right) = \frac{1}{aT} \operatorname{\text{Ш}}\,\!\left(\frac{t}{aT}\right) = \frac{1}{a} \operatorname{\text{Ш}}_{\ T}\!\!\left(\frac{t}{a}\right).</math> Note that requiring positive scaling numbers <math>a</math> instead of negative ones is not a restriction because the negative sign would only reverse the order of the summation within <math>\operatorname{\text{Ш}}_{\ T}</math>, which does not affect the result. == Fourier series == {{see also|Dirichlet kernel}} It is clear that <math>\operatorname{\text{Ш}}_{\ T}(t)</math> is periodic with period <math>T</math>. That is, <math display="block">\operatorname{\text{Ш}}_{\ T}(t + T) = \operatorname{\text{Ш}}_{\ T}(t)</math> for all ''t''. The complex Fourier series for such a periodic function is <math display="block"> \operatorname{\text{Ш}}_{\ T}(t) = \sum_{n=-\infty}^{+\infty} c_n e^{i 2 \pi n \frac{t}{T}}, </math> where (using [[Distribution_(mathematics)|distribution theory]]) the Fourier coefficients are <math display="block">\begin{align} c_n &= \frac{1}{T} \int_{t_0}^{t_0 + T} \operatorname{\text{Ш}}_{\ T}(t) e^{-i 2 \pi n \frac{t}{T}}\, dt \quad ( -\infty < t_0 < +\infty ) \\ &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \operatorname{\text{Ш}}_{\ T}(t) e^{-i 2 \pi n \frac{t}{T}}\, dt \\ &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-i 2 \pi n \frac{t}{T}}\, dt \\ &= \frac{1}{T} e^{-i 2 \pi n \frac{0}{T}} \\ &= \frac{1}{T}. \end{align}</math> All Fourier coefficients are 1/''T'' resulting in <math display="block">\operatorname{\text{Ш}}_{\ T}(t) = \frac{1}{T}\sum_{n=-\infty}^{\infty} \!\!e^{i 2 \pi n \frac{t}{T}}.</math> When the period is one unit, this simplifies to <math display="block">\operatorname{\text{Ш}}\ \!(x) = \sum_{n=-\infty}^{\infty} \!\!e^{i 2 \pi n x}.</math> This is a [[divergent series]], when understood as a series of ordinary complex numbers, but becomes convergent in the sense of [[distribution (mathematics)|distributions]]. A "square root" of the Dirac comb is employed in some applications to physics, specifically:<ref>{{Cite book |last=Schleich |first=Wolfgang |title=Quantum optics in phase space |date=2001 |publisher=Wiley-VCH |isbn=978-3-527-29435-0 |edition=1st |pages=683–684}}</ref><math display="block">\delta_N^{(1 / 2)}(\xi) = \frac{1}{\sqrt{NT}} \sum_{\nu=0}^{N-1} e^{-i \frac{2\pi}{T}\xi \nu}, \quad \lim_{N \rightarrow \infty}\left|\delta_N^{(1 / 2)}(\xi)\right|^2= \sum_{k=-\infty}^{\infty} \delta(\xi - kT).</math> However this is not a distribution in the ordinary sense. == Fourier transform == The [[continuous Fourier transform|Fourier transform]] of a Dirac comb is also a Dirac comb. For the Fourier transform <math>\mathcal{F}</math> expressed in [[Fourier transform#Other conventions|frequency domain]] (Hz) the Dirac comb <math>\operatorname{\text{Ш}}_{T}</math> of period <math>T</math> transforms into a rescaled Dirac comb of period <math>1/T,</math> i.e. for :<math>\mathcal{F}\left[ f \right](\xi)= \int_{-\infty}^{\infty} dt f(t) e^{- 2 \pi i\xi t}, </math> :<math>\mathcal{F}\left[ \operatorname{\text{Ш}}_{T} \right](\xi) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta(\xi-k \frac{1}{T}) = \frac{1}{T} \operatorname{\text{Ш}}_{\ \frac{1}{T}}(\xi) ~</math> is proportional to another Dirac comb, but with period <math>1/T</math> in frequency domain (radian/s). The Dirac comb <math>\operatorname{\text{Ш}}</math> of unit period <math>T=1</math> is thus an [[continuous Fourier transform#Eigenfunctions|eigenfunction]] of <math>\mathcal{F}</math> to the [[eigenvalue]] <math>1.</math> This result can be established{{sfn|Bracewell|1986}} by considering the respective Fourier transforms <math>S_{\tau}(\xi)=\mathcal{F}[s_{\tau}](\xi)</math> of the family of functions <math>s_{\tau}(x)</math> defined by :<math>s_{\tau}(x) = \tau^{-1} e^{-\pi \tau^2 x^2} \sum_{n=-\infty}^{\infty} e^{-\pi \tau^{-2} ( x-n)^{2} }.</math> Since <math>s_{\tau}(x)</math> is a convergent series of [[Gaussian function|Gaussian functions]], and Gaussians [[Fourier transform#Square-integrable functions, one-dimensional|transform]] into [[Normal distribution#Fourier transform and characteristic function|Gaussians]], each of their respective Fourier transforms <math>S_\tau(\xi)</math> also results in a series of Gaussians, and explicit calculation establishes that :<math>S_{\tau}(\xi) = \tau^{-1} \sum_{m=-\infty}^{\infty} e^{-\pi \tau^2 m^2} e^{-\pi \tau^{-2} ( \xi-m)^{2} }.</math> The functions <math>s_{\tau}(x)</math> and <math>S_\tau(\xi)</math> are thus each resembling a periodic function consisting of a series of equidistant Gaussian spikes <math>\tau^{-1} e^{-\pi \tau^{-2} ( x-n)^{2} }</math> and <math>\tau^{-1} e^{-\pi \tau^{-2} ( \xi-m)^{2} }</math> whose respective "heights" (pre-factors) are determined by slowly decreasing Gaussian envelope functions which drop to zero at infinity. Note that in the limit <math>\tau \rightarrow 0</math> each Gaussian spike becomes an infinitely sharp [[Dirac delta function|Dirac impulse]] centered respectively at <math>x=n</math> and <math>\xi=m</math> for each respective <math>n</math> and <math>m</math>, and hence also all pre-factors <math> e^{-\pi \tau^2 m^2}</math> in <math>S_{\tau}(\xi)</math> eventually become indistinguishable from <math> e^{-\pi \tau^2 \xi^2}</math>. Therefore the functions <math>s_{\tau}(x)</math> and their respective Fourier transforms <math>S_{\tau}(\xi)</math> converge to the same function and this limit function is a series of infinite equidistant Gaussian spikes, each spike being multiplied by the same pre-factor of one, i.e., the Dirac comb for unit period: :<math>\lim_{\tau \rightarrow 0} s_{\tau}(x) = \operatorname{\text{Ш}}({x}),</math> and <math>\lim_{\tau \rightarrow 0} S_{\tau}(\xi) = \operatorname{\text{Ш}}({\xi}).</math> Since <math>S_{\tau}=\mathcal{F}[s_{\tau}]</math>, we obtain in this limit the result to be demonstrated: :<math>\mathcal{F}[\operatorname{\text{Ш}}]= \operatorname{\text{Ш}}.</math> The corresponding result for period <math>T</math> can be found by exploiting the [[Fourier transform#Time scaling|scaling property]] of the [[Fourier transform]], :<math>\mathcal{F}[\operatorname{\text{Ш}}_T]= \frac{1}{T} \operatorname{\text{Ш}}_{\frac{1}{T}}.</math> Another manner to establish that the Dirac comb transforms into another Dirac comb starts by examining [[Fourier transform#Fourier transform for periodic functions|continuous Fourier transforms of periodic functions]] in general, and then specialises to the case of the Dirac comb. In order to also show that the specific rule depends on the [[Fourier transform#Other conventions|convention]] for the Fourier transform, this will be shown using angular frequency with <math>\omega=2\pi \xi :</math> for any periodic function <math>f(t)=f(t+T)</math> its Fourier transform :<math>\mathcal{F}\left[ f \right](\omega)=F(\omega) = \int_{-\infty}^{\infty} dt f(t) e^{-i\omega t} </math> obeys: :<math>F(\omega) (1 - e^{i \omega T}) = 0</math> because Fourier transforming <math>f(t)</math> and <math>f(t+T)</math> leads to <math>F(\omega)</math> and <math>F(\omega) e^{i \omega T}.</math> This equation implies that <math>F(\omega)=0</math> nearly everywhere with the only possible exceptions lying at <math>\omega= k \omega_0,</math> with <math>\omega_0=2\pi / T</math> and <math>k \in \mathbb{Z}.</math> When evaluating the Fourier transform at <math>F(k \omega_0)</math> the corresponding Fourier series expression times a corresponding delta function results. For the special case of the Fourier transform of the Dirac comb, the Fourier series integral over a single period covers only the Dirac function at the origin and thus gives <math>1/T</math> for each <math>k.</math> This can be summarised by interpreting the Dirac comb as a limit of the [[Dirichlet kernel#Relation to the periodic delta function|Dirichlet kernel]] such that, at the positions <math>\omega= k \omega_0,</math> all exponentials in the sum <math> \sum\nolimits_{m=-\infty}^{\infty} e^{\pm i \omega m T} </math> point into the same direction and add constructively. In other words, the [[Fourier transform#Fourier transform for periodic functions|continuous Fourier transform of periodic functions]] leads to :<math>F(\omega)= 2 \pi \sum_{k=-\infty}^{\infty} c_k \delta(\omega-k\omega_0) </math> with <math>\omega_0=2 \pi/T,</math> and :<math>c_k = \frac{1}{T} \int_{-T/2 }^{+T/2} dt f(t) e^{-i 2 \pi k t/T}.</math> The [[#Fourier series|Fourier series]] coefficients <math>c_k=1/T</math> for all <math>k</math> when <math>f \rightarrow \operatorname{\text{Ш}}_{T}</math>, i.e. :<math>\mathcal{F}\left[ \operatorname{\text{Ш}}_{T} \right](\omega) = \frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega-k \frac{2 \pi}{T})</math> is another Dirac comb, but with period <math>2 \pi/T</math> in angular frequency domain (radian/s). As mentioned, the specific rule depends on the [[Fourier transform#Other conventions|convention]] for the used Fourier transform. Indeed, when using the [[Dirac delta function#Scaling and symmetry|scaling property]] of the Dirac delta function, the above may be re-expressed in ordinary frequency domain (Hz) and one obtains again: <math display="block">\operatorname{\text{Ш}}_{\ T}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{T} \operatorname{\text{Ш}}_{\ \frac{1}{T}}(\xi) = \sum_{n=-\infty}^{\infty}\!\! e^{-i 2\pi \xi n T},</math> such that the unit period Dirac comb transforms to itself: <math display="block">\operatorname{\text{Ш}}\ \!(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{\text{Ш}}\ \!(\xi).</math> Finally, the Dirac comb is also an [[Fourier transform#Eigenfunctions|eigenfunction]] of the unitary continuous Fourier transform in [[Fourier transform#Other conventions|angular frequency]] space to the eigenvalue 1 when <math>T=\sqrt{2 \pi}</math> because for the unitary Fourier transform :<math>\mathcal{F}\left[ f \right](\omega)=F(\omega) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} dt f(t) e^{-i\omega t}, </math> the above may be re-expressed as <math display="block">\operatorname{\text{Ш}}_{\ T}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{\sqrt{2\pi}}{T} \operatorname{\text{Ш}}_{\ \frac{2\pi}{T}}(\omega) = \frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty} \!\!e^{-i\omega nT}.</math> ==Sampling and aliasing== Multiplying any function by a Dirac comb transforms it into a train of impulses with integrals equal to the value of the function at the nodes of the comb. This operation is frequently used to represent sampling. <math display="block"> (\operatorname{\text{Ш}}_{\ T} x)(t) = \sum_{k=-\infty}^{\infty} \!\! x(t)\delta(t - kT) = \sum_{k=-\infty}^{\infty}\!\! x(kT)\delta(t - kT).</math> Due to the [[Dirac comb#Fourier transform|self-transforming]] property of the Dirac comb and the [[convolution theorem]], this corresponds to convolution with the Dirac comb in the frequency domain. <math display="block"> \operatorname{\text{Ш}}_{\ T} x \ \stackrel{\mathcal{F}}{\longleftrightarrow}\ \frac{1}{T}\operatorname{\text{Ш}}_\frac{1}{T} * X</math> Since convolution with a delta function <math>\delta(t-kT)</math> is equivalent to shifting the function by <math>kT</math>, convolution with the Dirac comb corresponds to replication or [[periodic summation]]: :<math> (\operatorname{\text{Ш}}_{\ \frac{1}{T}}\! * X)(f) =\! \sum_{k=-\infty}^{\infty} \!\!X\!\left(f - \frac{k}{T}\right) </math> This leads to a natural formulation of the [[Nyquist–Shannon sampling theorem]]. If the spectrum of the function <math>x</math> contains no frequencies higher than B (i.e., its spectrum is nonzero only in the interval <math>(-B, B)</math>) then samples of the original function at intervals <math>\tfrac{1}{2B}</math> are sufficient to reconstruct the original signal. It suffices to multiply the spectrum of the sampled function by a suitable [[rectangle function]], which is equivalent to applying a brick-wall [[lowpass filter]]. :<math> \operatorname{\text{Ш}}_{\ \!\frac{1}{2B}} x\ \ \stackrel{\mathcal{F}}{\longleftrightarrow}\ \ 2B\, \operatorname{\text{Ш}}_{\ 2B} * X</math> :<math> \frac{1}{2B}\Pi\left(\frac{f}{2B}\right) (2B \,\operatorname{\text{Ш}}_{\ 2B} * X) = X</math> In time domain, this "multiplication with the rect function" is equivalent to "convolution with the sinc function."{{sfn|Woodward|1953|pp=33-34}} Hence, it restores the original function from its samples. This is known as the [[Whittaker–Shannon interpolation formula]]. '''Remark''': Most rigorously, multiplication of the rect function with a generalized function, such as the Dirac comb, fails. This is due to undetermined outcomes of the multiplication product at the interval boundaries. As a workaround, one uses a Lighthill unitary function instead of the rect function. It is smooth at the interval boundaries, hence it yields determined multiplication products everywhere, see {{harvnb|Lighthill|1958|p=62}}, Theorem 22 for details. == Use in directional statistics == {{unreferenced section|date=October 2017}} In [[directional statistics]], the Dirac comb of period <math>2\pi</math> is equivalent to a [[wrapped distribution|wrapped]] Dirac delta function and is the analog of the [[Dirac delta function]] in linear statistics. In linear statistics, the random variable <math>(x)</math> is usually distributed over the real-number line, or some subset thereof, and the probability density of <math>x</math> is a function whose domain is the set of real numbers, and whose integral from <math>-\infty</math> to <math>+\infty</math> is unity. In directional statistics, the random variable <math>(\theta)</math> is distributed over the unit circle, and the probability density of <math>\theta</math> is a function whose domain is some interval of the real numbers of length <math>2\pi</math> and whose integral over that interval is unity. Just as the integral of the product of a Dirac delta function with an arbitrary function over the real-number line yields the value of that function at zero, so the integral of the product of a Dirac comb of period <math>2\pi</math> with an arbitrary function of period <math>2\pi</math> over the unit circle yields the value of that function at zero. ==See also== *[[Comb filter]] *[[Frequency comb]] *[[Poisson summation formula]] *[[Theta function]] == Notes == {{Reflist}} == References == * {{Cite book |last=Brandwood |first=D. |title=Fourier Transforms in Radar and Signal Processing |publisher=Artech House |year=2003 |isbn=1580531741 |location=Boston |lccn=2002044073}} * {{Cite book |last=Lighthill |first=M.J. |title=An Introduction to Fourier Analysis and Generalized Functions |publisher=Cambridge University Press |year=1958 |location=Cambridge |doi=10.1017/CBO9781139171427|isbn=978-0-521-05556-7 }} * {{Cite book |last=Woodward |first=P. M. |title=Probability and Information Theory, with Applications to Radar |publisher=Pergamon Press |year=1953 |oclc=6570386}} == Further reading == * {{Cite journal |last=Córdoba |first=A |year=1989 |title=Dirac combs |journal=Letters in Mathematical Physics |volume=17 |issue=3 |pages=191–196 |bibcode=1989LMaPh..17..191C |doi=10.1007/BF00401584 |s2cid=189883287}} {{ProbDistributions|continuous-infinite}} [[Category:Special functions]] [[Category:Generalized functions]] [[Category:Signal processing]] [[Category:Directional statistics]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Ambox
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Harvnb
(
edit
)
Template:ProbDistributions
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Unreferenced
(
edit
)
Template:Unreferenced section
(
edit
)
Template:Use dmy dates
(
edit
)