Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet L-function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of mathematical function}} {{DISPLAYTITLE:Dirichlet ''L''-function}} In [[mathematics]], a '''Dirichlet''' <math>L</math>-'''series''' is a function of the form :<math>L(s,\chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}.</math> where <math> \chi </math> is a [[Dirichlet character]] and <math> s </math> a [[complex variable]] with [[real part]] greater than <math> 1 </math>. It is a special case of a [[Dirichlet series]]. By [[analytic continuation]], it can be extended to a [[meromorphic function]] on the whole [[complex plane]], and is then called a '''Dirichlet <math> L </math>-function''' and also denoted <math> L ( s , \chi) </math>. These functions are named after [[Peter Gustav Lejeune Dirichlet]] who introduced them in {{harv|Dirichlet|1837}} to prove the [[Dirichlet's theorem on arithmetic progressions|theorem on primes in arithmetic progressions]] that also bears his name. In the course of the proof, Dirichlet shows that <math> L ( s , \chi) </math> is non-zero at <math> s = 1 </math>. Moreover, if <math> \chi </math> is principal, then the corresponding Dirichlet <math> L </math>-function has a [[simple pole]] at <math> s = 1 </math>. Otherwise, the <math> L </math>-function is [[entire function|entire]]. ==Euler product== Since a Dirichlet character <math> \chi </math> is [[completely multiplicative]], its <math> L </math>-function can also be written as an [[Euler product]] in the [[half-plane]] of [[absolute convergence]]: :<math>L(s,\chi)=\prod_p\left(1-\chi(p)p^{-s}\right)^{-1}\text{ for }\text{Re}(s) > 1,</math> where the product is over all [[prime number]]s.<ref>{{harvnb|Apostol|1976|loc=Theorem 11.7}}</ref> ==Primitive characters== Results about ''L''-functions are often stated more simply if the character is assumed to be primitive, although the results typically can be extended to imprimitive characters with minor complications.<ref>{{harvnb|Davenport|2000|loc=chapter 5}}</ref> This is because of the relationship between a imprimitive character <math>\chi</math> and the primitive character <math>\chi^\star</math> which induces it:<ref>{{harvnb|Davenport|2000|loc=chapter 5, equation (2)}}</ref> :<math> \chi(n) = \begin{cases} \chi^\star(n), & \mathrm{if} \gcd(n,q) = 1 \\ 0, & \mathrm{if} \gcd(n,q) \ne 1 \end{cases} </math> (Here, ''q'' is the modulus of ''Ο''.) An application of the Euler product gives a simple relationship between the corresponding ''L''-functions:<ref>{{harvnb|Davenport|2000|loc=chapter 5, equation (3)}}</ref><ref>{{harvnb|Montgomery|Vaughan|2006|p=282}}</ref> :<math> L(s,\chi) = L(s,\chi^\star) \prod_{p \,|\, q}\left(1 - \frac{\chi^\star(p)}{p^s} \right) </math> (This formula holds for all ''s'', by analytic continuation, even though the Euler product is only valid when Re(''s'') > 1.) The formula shows that the ''L''-function of ''Ο'' is equal to the ''L''-function of the primitive character which induces ''Ο'', multiplied by only a finite number of factors.<ref>{{harvnb|Apostol|1976|p=262}}</ref> As a special case, the ''L''-function of the principal character <math>\chi_0</math> modulo ''q'' can be expressed in terms of the [[Riemann zeta function]]:<ref>{{harvnb|Ireland|Rosen|1990|loc=chapter 16, section 4}}</ref><ref>{{harvnb|Montgomery|Vaughan|2006|p=121}}</ref> :<math> L(s,\chi_0) = \zeta(s) \prod_{p \,|\, q}(1 - p^{-s}) </math> ==Functional equation== Dirichlet ''L''-functions satisfy a [[functional equation]], which provides a way to analytically continue them throughout the complex plane. The functional equation relates the value of <math>L(s,\chi)</math> to the value of <math>L(1-s, \overline{\chi})</math>. Let ''Ο'' be a primitive character modulo ''q'', where ''q'' > 1. One way to express the functional equation is:<ref name="MontgomeryVaughan333" /> :<math>L(s,\chi) = W(\chi) 2^s \pi^{s-1} q^{1/2-s} \sin \left( \frac{\pi}{2} (s + \delta) \right) \Gamma(1-s) L(1-s, \overline{\chi}).</math> In this equation, Ξ denotes the [[gamma function]]; :<math>\chi(-1)=(-1)^{\delta}</math> ; and :<math>W(\chi) = \frac{\tau(\chi)}{i^{\delta} \sqrt{q}}</math> where ''Ο''{{hairsp}}({{hairsp}}''Ο'') is a [[Gauss sum]]: :<math>\tau(\chi) = \sum_{a=1}^q \chi(a)\exp(2\pi ia/q).</math> It is a property of Gauss sums that |''Ο''{{hairsp}}({{hairsp}}''Ο''){{hairsp}}| = ''q''<sup>1/2</sup>, so |''W''{{hairsp}}({{hairsp}}''Ο''){{hairsp}}| = 1.<ref name="MontgomeryVaughan332">{{harvnb|Montgomery|Vaughan|2006|p=332}}</ref><ref name="IwaniecKowalski84">{{harvnb|Iwaniec|Kowalski|2004|p=84}}</ref> Another way to state the functional equation is in terms of :<math>\Lambda(s,\chi) = q ^{s/2} \pi^{-(s+\delta)/2} \operatorname{\Gamma}\left(\frac{s+\delta}{2}\right) L(s,\chi).</math> The functional equation can be expressed as:<ref name="MontgomeryVaughan333" /><ref name="IwaniecKowalski84" /> :<math>\Lambda(s,\chi) = W(\chi) \Lambda(1-s,\overline{\chi}).</math> The functional equation implies that <math>L(s,\chi)</math> (and <math>\Lambda(s,\chi)</math>) are [[entire function|entire functions]] of ''s''. (Again, this assumes that ''Ο'' is primitive character modulo ''q'' with ''q'' > 1. If ''q'' = 1, then <math>L(s,\chi) = \zeta(s)</math> has a pole at ''s'' = 1.)<ref name="MontgomeryVaughan333">{{harvnb|Montgomery|Vaughan|2006|p=333}}</ref><ref name="IwaniecKowalski84" /> For generalizations, see: [[Functional equation (L-function)]]. ==Zeros== [[Image:Mplwp dirichlet beta.svg|thumb|right|300px|The Dirichlet ''L''-function ''L''(''s'', ''Ο'') = 1 β 3<sup>β''s''</sup> + 5<sup>β''s''</sup> β 7<sup>β''s''</sup> + β β β (sometimes given the special name [[Dirichlet beta function]]), with trivial zeros at the negative odd integers]] Let ''Ο'' be a primitive character modulo ''q'', with ''q'' > 1. There are no [[zero of a function|zeros]] of ''L''(''s'', ''Ο'') with Re(''s'') > 1. For Re(''s'') < 0, there are zeros at certain negative [[integer]]s ''s'': * If ''Ο''(β1) = 1, the only zeros of ''L''(''s'', ''Ο'') with Re(''s'') < 0 are simple zeros at β2, β4, β6, .... (There is also a zero at ''s'' = 0.) These correspond to the poles of <math>\textstyle \Gamma(\frac{s}{2})</math>.<ref name="DavenportCh9">{{harvnb|Davenport|2000|loc=chapter 9}}</ref> * If ''Ο''(β1) = β1, then the only zeros of ''L''(''s'', ''Ο'') with Re(''s'') < 0 are simple zeros at β1, β3, β5, .... These correspond to the poles of <math>\textstyle \Gamma(\frac{s+1}{2})</math>.<ref name="DavenportCh9" /> These are called the trivial zeros.<ref name="MontgomeryVaughan333"/> The remaining zeros lie in the critical strip 0 β€ Re(''s'') β€ 1, and are called the non-trivial zeros. The non-trivial zeros are symmetrical about the critical line Re(''s'') = 1/2. That is, if <math>L(\rho,\chi)=0</math> then <math>L(1-\overline{\rho},\chi)=0</math> too, because of the functional equation. If ''Ο'' is a real character, then the non-trivial zeros are also symmetrical about the real axis, but not if ''Ο'' is a complex character. The [[generalized Riemann hypothesis]] is the conjecture that all the non-trivial zeros lie on the critical line Re(''s'') = 1/2.<ref name="MontgomeryVaughan333" /> Up to the possible existence of a [[Siegel zero]], zero-free regions including and beyond the line Re(''s'') = 1 similar to that of the Riemann zeta function are known to exist for all Dirichlet ''L''-functions: for example, for ''Ο'' a non-real character of modulus ''q'', we have :<math> \beta < 1 - \frac{c}{\log\!\!\; \big(q(2+|\gamma|)\big)} \ </math> for Ξ² + iΞ³ a non-real zero.<ref>{{cite book |last=Montgomery |first=Hugh L. |author-link=Hugh Montgomery (mathematician) |title=Ten lectures on the interface between analytic number theory and harmonic analysis |series=Regional Conference Series in Mathematics |volume=84 |location=Providence, RI |publisher=[[American Mathematical Society]] |year=1994 |isbn=0-8218-0737-4 |zbl=0814.11001 |page=163}}</ref> == Relation to the Hurwitz zeta function == The Dirichlet ''L''-functions may be written as a linear combination of the [[Hurwitz zeta function]] at rational values. Fixing an integer ''k'' β₯ 1, the Dirichlet ''L''-functions for characters modulo ''k'' are linear combinations, with constant coefficients, of the ''ΞΆ''(''s'',''a'') where ''a'' = ''r''/''k'' and ''r'' = 1, 2, ..., ''k''. This means that the Hurwitz zeta function for rational ''a'' has analytic properties that are closely related to the Dirichlet ''L''-functions. Specifically, let ''χ'' be a character modulo ''k''. Then we can write its Dirichlet ''L''-function as:<ref>{{harvnb|Apostol|1976|p=249}}</ref> :<math>L(s,\chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s} = \frac{1}{k^s} \sum_{r=1}^k \chi(r) \operatorname{\zeta}\left(s,\frac{r}{k}\right).</math> ==See also== *[[Generalized Riemann hypothesis]] *[[L-function]] *[[Modularity theorem]] *[[Artin conjecture (L-functions)|Artin conjecture]] *[[Special values of L-functions]] ==Notes== {{reflist}} == References == * {{Apostol IANT}} *{{dlmf|id=25.15|first=T. M.|last=Apostol}} * {{cite book|first=H.|last=Davenport|author-link=Harold Davenport |title=Multiplicative Number Theory |publisher=Springer |year=2000 |edition=3rd |isbn=0-387-95097-4}} * {{Cite journal | last=Dirichlet | first=P. G. L. | author-link=Peter Gustav Lejeune Dirichlet | title=Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthΓ€lt | journal=Abhand. Ak. Wiss. Berlin | volume=48 | year=1837 }} * {{cite book|first1=Kenneth|last1=Ireland|first2=Michael|last2=Rosen|author-link2=Michael Rosen (mathematician)|title=A Classical Introduction to Modern Number Theory|edition=2nd|publisher=Springer-Verlag|year=1990}} * {{cite book|first1=Hugh L.|last1=Montgomery |author-link=Hugh Montgomery (mathematician)|first2=Robert C.|last2=Vaughan |author-link2=Robert Charles Vaughan (mathematician) | title=Multiplicative number theory. I. Classical theory| series=Cambridge tracts in advanced mathematics| volume=97| publisher=Cambridge University Press|year=2006| isbn=978-0-521-84903-6}} * {{cite book |last1=Iwaniec |first1=Henryk |author-link=Henryk Iwaniec |last2=Kowalski |first2=Emmanuel |year=2004 |title=Analytic Number Theory |series=American Mathematical Society Colloquium Publications |volume=53 |location=Providence, RI |publisher=American Mathematical Society }} * {{springer|title=Dirichlet-L-function|id=p/d032890}} {{L-functions-footer}} [[Category:Zeta and L-functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Apostol IANT
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Dlmf
(
edit
)
Template:Hairsp
(
edit
)
Template:Harv
(
edit
)
Template:Harvnb
(
edit
)
Template:L-functions-footer
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)