Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Indicator function of rational numbers}} In [[mathematics]], the '''Dirichlet function'''<ref>{{springer|title=Dirichlet-function|id=p/d032860}}</ref><ref>[http://mathworld.wolfram.com/DirichletFunction.html Dirichlet Function — from MathWorld]</ref> is the [[indicator function]] <math>\mathbf{1}_\Q</math> of the set of [[rational number|rational numbers]] <math>\Q</math>, i.e. <math>\mathbf{1}_\Q(x) = 1</math> if {{mvar|x}} is a rational number and <math>\mathbf{1}_\Q(x) = 0</math> if {{mvar|x}} is not a rational number (i.e. is an [[irrational number]]). <math display="block">\mathbf 1_\Q(x) = \begin{cases} 1 & x \in \Q \\ 0 & x \notin \Q \end{cases}</math> It is named after the mathematician [[Peter Gustav Lejeune Dirichlet]].<ref>{{cite journal| first = Peter Gustav | last = Lejeune Dirichlet | title = Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données| journal = Journal für die reine und angewandte Mathematik |volume = 4 | year = 1829 | url = https://eudml.org/doc/183134 | pages = 157–169}}</ref> It is an example of a [[Pathological (mathematics)|pathological function]] which provides counterexamples to many situations. == Topological properties == {{unordered list | The Dirichlet function is [[nowhere continuous function|nowhere continuous]]. {{Math proof| drop=hidden|proof=*If {{mvar|y}} is rational, then {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 1}}}}. To show the function is not continuous at {{mvar|y}}, we need to find an {{mvar|ε}} such that no matter how small we choose {{mvar|δ}}, there will be points {{mvar|z}} within {{mvar|δ}} of {{mvar|y}} such that {{math|{{var|f}}({{var|z}})}} is not within {{mvar|ε}} of {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 1}}}}. In fact, {{frac|1|2}} is such an {{mvar|ε}}. Because the [[irrational number]]s are [[dense set|dense]] in the reals, no matter what {{mvar|δ}} we choose we can always find an irrational {{mvar|z}} within {{mvar|δ}} of {{mvar|y}}, and {{nowrap|{{math|{{var|f}}({{var|z}}) {{=}} 0}}}} is at least {{frac|1|2}} away from 1. *If {{mvar|y}} is irrational, then {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 0}}}}. Again, we can take {{nowrap|{{math|{{var|ε}} {{=}} {{frac|1|2}}}}}}, and this time, because the rational numbers are dense in the reals, we can pick {{mvar|z}} to be a rational number as close to {{mvar|y}} as is required. Again, {{nowrap|{{math|{{var|f}}({{var|z}}) {{=}} 1}}}} is more than {{frac|1|2}} away from {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 0}}}}.}} Its restrictions to the set of rational numbers and to the set of irrational numbers are [[constant function|constants]] and therefore continuous. The Dirichlet function is an archetypal example of the [[Blumberg theorem]]. | The Dirichlet function can be constructed as the double pointwise limit of a sequence of continuous functions, as follows: <math display="block">\forall x \in \R, \quad \mathbf{1}_{\Q}(x) = \lim_{k \to \infty} \left(\lim_{j\to\infty}\left(\cos(k!\pi x)\right)^{2j}\right)</math> for integer {{mvar|j}} and {{mvar|k}}. This shows that the Dirichlet function is a [[Baire function|Baire class]] 2 function. It cannot be a Baire class 1 function because a Baire class 1 function can only be discontinuous on a [[meagre set]].<ref>{{cite book | last = Dunham | first = William | title = The Calculus Gallery | publisher = [[Princeton University Press]] | date = 2005 | pages = 197 | isbn = 0-691-09565-5 }}</ref> }} == Periodicity == For any real number {{mvar|x}} and any positive rational number {{mvar|T}}, <math>\mathbf{1}_\Q(x + T) = \mathbf{1}_\Q(x)</math>. The Dirichlet function is therefore an example of a real [[periodic function]] which is not [[constant function|constant]] but whose set of periods, the set of rational numbers, is a [[Dense set|dense subset]] of <math>\R</math>. == Integration properties == {{unordered list | The Dirichlet function is not [[Riemann integral|Riemann-integrable]] on any segment of <math>\R</math> despite being bounded because the set of its discontinuity points is not [[negligible set|negligible]] (for the [[Lebesgue measure]]). | The Dirichlet function has both an upper [[Darboux integral]] (namely, <math>b-a</math>) and a lower Darboux integral (0) over any bounded interval <math>[a,b]</math> — but they are not equal if <math> a < b</math>, so the Dirichlet function is not Darboux-integrable (and therefore not Riemann-integrable) over any nondegenerate interval. | The Dirichlet function provides a counterexample showing that the [[monotone convergence theorem]] is not true in the context of the Riemann integral. {{Math proof|drop=hidden|proof=Using an [[enumeration]] of the rational numbers between 0 and 1, we define the function {{math|{{var|f}}{{sub|{{var|n}}}}}} (for all nonnegative integer {{mvar|n}}) as the indicator function of the set of the first {{mvar|n}} terms of this sequence of rational numbers. The increasing sequence of functions {{math|{{var|f}}{{sub|{{var|n}}}}}} (which are nonnegative, Riemann-integrable with a vanishing integral) pointwise converges to the Dirichlet function which is not Riemann-integrable.}} | The Dirichlet function is [[Lebesgue integral|Lebesgue-integrable]] on <math>\R</math> and its integral over <math>\R</math> is zero because it is zero except on the set of rational numbers which is negligible (for the Lebesgue measure). }} ==See also== * [[Thomae's function]], a variation that is discontinuous only at the rational numbers == References == {{Reflist}} [[Category:Elementary special functions|Dirichlet]] [[Category:Real analysis]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Unordered list
(
edit
)