Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ehrhart polynomial
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Relation of an integral polytope's volume to how many integer points it encloses}} In [[mathematics]], an [[integral polytope]] has an associated '''Ehrhart polynomial''' that encodes the relationship between the [[volume]] of a [[polytope]] and the number of [[integer point]]s the polytope contains. The theory of Ehrhart [[polynomial]]s can be seen as a higher-dimensional generalization of [[Pick's theorem]] in the [[Euclidean plane]]. These polynomials are named after [[Eugène Ehrhart]] who introduced them in the 1960s. ==Definition== Informally, if {{math|''P''}} is a [[polytope]], and {{math|''tP''}} is the polytope formed by expanding {{math|''P''}} by a factor of {{math|''t''}} in each dimension, then {{math|''L''(''P'', ''t'')}} is the number of [[integer lattice]] points in {{math|''tP''}}. More formally, consider a [[lattice (group)|lattice]] <math>\mathcal{L}</math> in [[Euclidean space]] <math>\R^n</math> and a {{math|''d''}}-[[dimension]]al polytope {{math|''P''}} in <math>\R^n</math> with the property that all vertices of the polytope are points of the lattice. (A common example is <math>\mathcal{L} = \Z^n</math> and a polytope for which all vertices have [[integer]] coordinates.) For any positive integer {{math|''t''}}, let {{math|''tP''}} be the {{math|''t''}}-fold dilation of {{math|''P''}} (the polytope formed by multiplying each vertex coordinate, in a basis for the lattice, by a factor of {{math|''t''}}), and let :<math>L(P,t) = \#\left(tP \cap \mathcal{L}\right)</math> be the number of lattice points contained in the polytope {{math|''tP''}}. Ehrhart showed in 1962 that {{math|''L''}} is a rational [[polynomial]] of degree {{math|''d''}} in {{math|''t''}}, i.e. there exist [[rational number]]s <math>L_0(P),\dots,L_d(P)</math> such that: :<math>L(P, t) = L_d(P) t^d + L_{d-1}(P) t^{d-1} + \cdots + L_0(P)</math> for all positive integers {{math|''t''}}.<ref name=ehrhart>{{citation | last = Ehrhart | first = Eugène | authorlink=Eugène Ehrhart | journal = [[Comptes rendus de l'Académie des Sciences]] | pages = 616–618 | title = Sur les polyèdres rationnels homothétiques à ''n'' dimensions | volume = 254 | year = 1962 | mr=0130860}}</ref> ===Reciprocity property=== The Ehrhart polynomial of the [[interior (topology)|interior]] of a closed convex polytope {{math|''P''}} can be computed as: :<math> L(\operatorname{int}(P), t) = (-1)^d L(P, -t),</math> where {{math|''d''}} is the dimension of {{math|''P''}}. This result is known as Ehrhart–Macdonald reciprocity.<ref>Ehrhart, Eugène (1967), "Démonstration de la loi de réciprocité du polyèdre rationnel", ''Comptes Rendus de l'Academie des Sciences de Paris, Sér. A-B'' 265, A91–A94.</ref><ref>{{citation| last=Macdonald |first =Ian G.|authorlink=Ian G. Macdonald| title=Polynomials associated with finite cell-complexes|journal=[[Journal of the London Mathematical Society]]|year=1971|volume=2|issue=1|pages=181–192|doi=10.1112/jlms/s2-4.1.181 }}</ref> ==Examples== [[File:Second dilate of a unit square.png|thumbnail|This is the second dilate, <math>t = 2</math>, of a unit square. It has nine integer points.]] Let {{math|''P''}} be a {{math|''d''}}-dimensional [[unit cube|unit]] [[hypercube]] whose vertices are the integer lattice points all of whose coordinates are 0 or 1. In terms of inequalities, :<math> P = \left\{x\in\R^d : 0 \le x_i \le 1; 1 \le i \le d\right\}.</math> Then the {{math|''t''}}-fold dilation of {{math|''P''}} is a cube with side length {{math|''t''}}, containing {{math|(''t'' + 1)<sup>''d''</sup>}} integer points. That is, the Ehrhart polynomial of the hypercube is {{math|''L''(''P'',''t'') {{=}} (''t'' + 1)<sup>''d''</sup>}}.<ref>{{citation|title=Triangulations: Structures for Algorithms and Applications|volume=25|series=Algorithms and Computation in Mathematics|first1=Jesús A.|last1=De Loera|author1-link=Jesús A. De Loera|first2=Jörg|last2=Rambau|first3=Francisco|last3=Santos|author3-link= Francisco Santos Leal |publisher=Springer|year=2010|isbn=978-3-642-12970-4 |contribution=Ehrhart polynomials and unimodular triangulations |page=475 |url=https://books.google.com/books?id=SxY1Xrr12DwC&pg=PA475}}</ref><ref>{{citation|first1=Richard J.|last1=Mathar|arxiv=1002.3844 |title=Point counts of <math>D_k</math> and some <math>A_k</math> and <math>E_k</math> integer lattices inside hypercubes |year=2010 |bibcode=2010arXiv1002.3844M }}</ref> Additionally, if we evaluate {{math|''L''(''P'', ''t'')}} at negative integers, then : <math>L(P, -t) = (-1)^d (t - 1)^d = (-1)^d L(\operatorname{int}(P), t),</math> as we would expect from Ehrhart–Macdonald reciprocity. Many other [[figurate number]]s can be expressed as Ehrhart polynomials. For instance, the [[square pyramidal number]]s are given by the Ehrhart polynomials of a [[square pyramid]] with an integer unit square as its base and with height one; the Ehrhart polynomial in this case is {{math|{{sfrac|1|6}}(''t'' + 1)(''t'' + 2)(2''t'' + 3)}}.<ref>{{citation | last1 = Beck | first1 = Matthias | last2 = De Loera | first2 = Jesús A. | author2-link = Jesús A. De Loera | last3 = Develin | first3 = Mike | author3-link = Mike Develin | last4 = Pfeifle | first4 = Julian | last5 = Stanley | first5 = Richard P. | author5-link = Richard P. Stanley | contribution = Coefficients and roots of Ehrhart polynomials | location = Providence, RI | mr = 2134759 | pages = 15–36 | publisher = [[American Mathematical Society]] | series = Contemporary Mathematics | title = Integer Points in Polyhedra—Geometry, Number Theory, Algebra, Optimization | volume = 374 | year = 2005}}</ref> ==Ehrhart quasi-polynomials== Let {{math|''P''}} be a rational polytope. In other words, suppose :<math>P = \left\{ x\in\R^d : Ax \le b\right\},</math> where <math>A \in \Q^{k \times d}</math> and <math>b \in \Q^k.</math> (Equivalently, {{math|''P''}} is the [[convex hull]] of finitely many points in <math>\Q^d.</math>) Then define :<math>L(P, t) = \#\left(\left\{x\in\Z^d : Ax \le tb \right\} \right). </math> In this case, {{math|''L''(''P'', ''t'')}} is a [[quasi-polynomial]] in {{math|''t''}}. Just as with integral polytopes, Ehrhart–Macdonald reciprocity holds, that is, : <math> L(\operatorname{int}(P), t) = (-1)^d L(P, -t). </math> ===Examples of Ehrhart quasi-polynomials=== Let {{math|''P''}} be a polygon with vertices (0,0), (0,2), (1,1) and ({{sfrac|3|2}}, 0). The number of integer points in {{math|''tP''}} will be counted by the quasi-polynomial <ref name=MR2271992>{{citation | last1 = Beck | first1 = Matthias | last2 = Robins | first2 = Sinai | mr = 2271992 | isbn = 978-0-387-29139-0 | location = New York | pages = [https://archive.org/details/computingcontinu00beck_082/page/n61 46]–47 | publisher = Springer-Verlag | series = [[Undergraduate Texts in Mathematics]] | title = Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra | title-link = Computing the Continuous Discretely | year = 2007}}</ref> : <math> L(P, t) = \frac{7t^2}{4} + \frac{5t}{2} + \frac{7 + (-1)^t}{8}. </math> ==Interpretation of coefficients== If {{math|''P''}} is [[closed set|closed]] (i.e. the boundary faces belong to {{math|''P''}}), some of the coefficients of {{math|''L''(''P'', ''t'')}} have an easy interpretation: * the leading coefficient, <math>L_d(P)</math>, is equal to the {{math|''d''}}-dimensional [[volume]] of {{math|''P''}}, divided by {{math|''d''(''L'')}} (see [[lattice (group)|lattice]] for an explanation of the content or covolume {{math|''d''(''L'')}} of a lattice); * the second coefficient, <math>L_{d-1}(P)</math>, can be computed as follows: the lattice {{math|''L''}} induces a lattice {{math|''L<sub>F</sub>''}} on any face {{math|''F''}} of {{math|''P''}}; take the {{math|(''d'' − 1)}}-dimensional volume of {{math|''F''}}, divide by {{math|2''d''(''L<sub>F</sub>'')}}, and add those numbers for all faces of {{math|''P''}}; * the constant coefficient, <math>L_0(P)</math>, is the [[Euler characteristic]] of {{math|''P''}}. When {{math|''P''}} is a closed [[convex polytope]], <math>L_0(P)=1.</math> ==The Betke–Kneser theorem== Ulrich Betke and [[Martin Kneser]]<ref>{{citation|last1=Betke|first1= Ulrich|last2= Kneser|first2=Martin|authorlink2=Martin Kneser| year=1985 | title=Zerlegungen und Bewertungen von Gitterpolytopen|journal= [[Crelle's Journal|Journal für die reine und angewandte Mathematik]] |volume=358|pages= 202–208|mr=0797683}}</ref> established the following characterization of the Ehrhart coefficients. A functional <math>Z</math> defined on integral polytopes is an <math>\operatorname{SL}(n,\Z)</math> and translation invariant [[Valuation (measure theory)|valuation]] if and only if there are real numbers <math>c_0,\ldots, c_n</math> such that :<math> Z= c_0 L_0+\cdots +c_n L_n.</math> ==Ehrhart series== We can define a [[generating function]] for the Ehrhart polynomial of an integral {{math|''d''}}-dimensional polytope {{math|''P''}} as : <math> \operatorname{Ehr}_P(z) = \sum_{t\ge 0} L(P, t)z^t. </math> This series can be expressed as a [[rational function]]. Specifically, Ehrhart proved (1962) that there exist complex numbers <math>h_j^*</math>, <math>0 \le j \le d</math>, such that the Ehrhart series of {{math|''P''}} is<ref name=ehrhart/> :<math>\operatorname{Ehr}_P(z) = \frac{\sum_{j=0}^d h_j^\ast(P) z^j}{(1 - z)^{d + 1}}, \qquad \sum_{j=0}^d h_j^\ast(P) \neq 0.</math> [[Richard P. Stanley]]'s non-negativity theorem states that under the given hypotheses, <math>h_j^*</math> will be non-negative integers, for <math>0 \le j \le d</math>. Another result by Stanley shows that if {{math|''P''}} is a lattice polytope contained in {{math|''Q''}}, then <math>h_j^*(P) \le h_j^*(Q)</math> for all {{math|''j''}}.<ref>{{citation|last1=Stanley|first1=Richard|title=A monotonicity property of <math>h</math>-vectors and <math>h^*</math>-vectors|journal=[[European Journal of Combinatorics]]|year=1993|volume=14|issue=3 |pages=251–258 |doi=10.1006/eujc.1993.1028|doi-access=free}}</ref> The <math>h^*</math>-vector is in general not unimodal, but it is whenever it is symmetric and the polytope has a regular unimodular triangulation.<ref>{{citation|last1=Athanasiadis|first1=Christos A.|title=''h''*-Vectors, Eulerian Polynomials and Stable Polytopes of Graphs| journal= [[Electronic Journal of Combinatorics]]| year=2004| volume=11| issue=2|doi=10.37236/1863| url= http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i2r6| doi-access=free}}</ref> ===Ehrhart series for rational polytopes=== As in the case of polytopes with integer vertices, one defines the Ehrhart series for a rational polytope. For a ''d''-dimensional rational polytope {{math|''P''}}, where {{math|''D''}} is the smallest integer such that {{math|''DP''}} is an integer polytope ({{math|''D''}} is called the denominator of {{math|''P''}}), then one has :<math>\operatorname{Ehr}_P(z) = \sum_{t\ge 0} L(P, t)z^t = \frac{\sum_{j=0}^{D(d+1)} h_j^\ast(P) z^j}{\left(1 - z^D\right)^{d + 1}},</math> where the <math>h_j^*</math> are still non-negative integers.<ref>{{citation|last=Stanley|first=Richard P.|authorlink=Richard P. Stanley|title=Decompositions of rational convex polytopes|journal=Annals of Discrete Mathematics|date=1980|volume=6|pages=333–342| doi=10.1016/s0167-5060(08)70717-9|isbn=9780444860484}}</ref><ref>{{citation| last1=Beck| first1=Matthias| last2=Sottile| first2= Frank|title=Irrational proofs for three theorems of Stanley|journal=[[European Journal of Combinatorics]]|date=January 2007| volume =28|issue=1|pages=403–409|doi=10.1016/j.ejc.2005.06.003|arxiv=math/0501359| s2cid=7801569}}</ref> == Non-leading coefficient bounds == The polynomial's non-leading coefficients <math>c_0,\dots,c_{d-1}</math> in the representation :<math>L(P,t) = \sum_{r=0}^d c_r t^r</math> can be upper bounded:<ref>{{citation|last1=Betke|first1=Ulrich |last2=McMullen|first2=Peter|author2-link=Peter McMullen|date=1985-12-01|title=Lattice points in lattice polytopes| journal=[[Monatshefte für Mathematik]]| language=en|volume=99|issue=4|pages=253–265|doi=10.1007/BF01312545|s2cid=119545615 |issn=1436-5081}}</ref> :<math>c_r \leq |s(d,r)| c_d + \frac{1}{(d-1)!} |s(d,r+1)|</math> where <math>s(n,k)</math> is the [[Stirling numbers of the first kind|Stirling number of the first kind]]. Lower bounds also exist.<ref>{{citation|last1=Henk|first1=Martin|last2=Tagami|first2=Makoto|date=2009-01-01|title=Lower bounds on the coefficients of Ehrhart polynomials|journal=[[European Journal of Combinatorics]]|volume=30|issue=1|pages=70–83|doi=10.1016/j.ejc.2008.02.009|issn=0195-6698| arxiv=0710.2665|s2cid=3026293}}</ref> ==Toric variety== The case <math>n=d=2</math> and <math>t = 1</math> of these statements yields [[Pick's theorem]]. Formulas for the other coefficients are much harder to get; [[Todd class]]es of [[toric variety|toric varieties]], the [[Riemann–Roch theorem]] as well as [[Fourier analysis]] have been used for this purpose. If {{math|''X''}} is the [[toric variety]] corresponding to the normal fan of {{math|''P''}}, then {{math|''P''}} defines an [[ample line bundle]] on {{math|''X''}}, and the Ehrhart polynomial of {{math|''P''}} coincides with the [[Hilbert polynomial]] of this line bundle. Ehrhart polynomials can be studied for their own sake. For instance, one could ask questions related to the roots of an Ehrhart polynomial.<ref>{{citation|last1=Braun|first1=Benjamin|last2=Develin|first2=Mike|authorlink2=Mike Develin| title=Ehrhart Polynomial Roots and Stanley's Non-Negativity Theorem|publisher=[[American Mathematical Society]] |year=2008|volume=452|series=Contemporary Mathematics|pages=67–78| doi= 10.1090/conm/452/08773 |arxiv=math/0610399|isbn=9780821841730|s2cid=118496291}}</ref> Furthermore, some authors have pursued the question of how these polynomials could be classified.<ref>{{citation| last=Higashitani |first=Akihiro| title= Classification of Ehrhart Polynomials of Integral Simplices|journal=DMTCS Proceedings| year=2012| pages=587–594| url= http://www.math.nagoya-u.ac.jp/fpsac12/download/contributed/dmAR0152.pdf}}</ref> ==Generalizations== It is possible to study the number of integer points in a polytope {{math|''P''}} if we dilate some facets of {{math|''P''}} but not others. In other words, one would like to know the number of integer points in semi-dilated polytopes. It turns out that such a counting function will be what is called a multivariate quasi-polynomial. An Ehrhart-type reciprocity theorem will also hold for such a counting function.<ref>{{citation| last=Beck |first= Matthias|title=Multidimensional Ehrhart reciprocity|journal=[[Journal of Combinatorial Theory]]|date=January 2002|volume=97|series=Series A| issue=1| pages=187–194| doi= 10.1006/jcta.2001.3220| arxiv= math/0111331|s2cid= 195227}}</ref> Counting the number of integer points in semi-dilations of polytopes has applications<ref>{{citation| last=Lisonek| first=Petr| title= Combinatorial Families Enumerated by Quasi-polynomials|journal=[[Journal of Combinatorial Theory]]| year=2007| volume=114| series=Series A|issue=4|pages=619–630| doi=10.1016/j.jcta.2006.06.013| doi-access=free}}</ref> in enumerating the number of different dissections of regular polygons and the number of non-isomorphic unrestricted codes, a particular kind of code in the field of [[coding theory]]. ==See also== * [[Quasi-polynomial]] * [[Stanley's reciprocity theorem]] ==References== {{reflist}} ==Further reading== *{{citation | last1 = Diaz | first1 = Ricardo | last2 = Robins | first2 = Sinai | journal = Electronic Research Announcements of the American Mathematical Society | pages = 1–6 | title = The Ehrhart polynomial of a lattice ''n''-simplex | volume = 2 | year = 1996 | mr = 1405963 | doi = 10.1090/S1079-6762-96-00001-7| doi-access = free }}. Introduces the Fourier analysis approach and gives references to other related articles. *{{citation | last = Mustață | first = Mircea | authorlink=Mircea Mustaţă | contribution = Ehrhart polynomials | date = February 2005 | title = Lecture notes on toric varieties | url = http://www.math.lsa.umich.edu/~mmustata/toric_var.html}}. [[Category:Figurate numbers]] [[Category:Polynomials]] [[Category:Lattice points]] [[Category:Polytopes]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Math
(
edit
)
Template:Reflist
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)