Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Epitrochoid
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Plane curve formed by rolling a circle on the outside of another}} [[File:EpitrochoidIn3.gif|thumb|400px|The epitrochoid with {{math|1=''R'' = 3}}, {{math|1=''r'' = 1}} and {{math|1=''d'' = 1/2}}]] In [[geometry]], an '''epitrochoid''' ({{IPAc-en|ɛ|p|ᵻ|ˈ|t|r|ɒ|k|ɔɪ|d}} or {{IPAc-en|ɛ|p|ᵻ|ˈ|t|r|oʊ|k|ɔɪ|d}}) is a [[roulette (curve)|roulette]] traced by a point attached to a [[circle]] of [[radius]] {{mvar|r}} rolling around the outside of a fixed circle of radius {{mvar|R}}, where the point is at a distance {{mvar|d}} from the center of the exterior circle. The [[parametric equation]]s for an epitrochoid are: :<math>\begin{align} & x (\theta) = (R + r)\cos\theta - d\cos\left({R + r \over r}\theta\right) \\ & y (\theta) = (R + r)\sin\theta - d\sin\left({R + r \over r}\theta\right) \end{align}</math> The parameter {{mvar|θ}} is geometrically the [[Polar coordinate system|polar angle]] of the center of the exterior circle. (However, {{mvar|θ}} is not the polar angle of the point <math>(x(\theta),y(\theta))</math> on the epitrochoid.) Special cases include the [[limaçon]] with {{math|1=''R'' = ''r''}} and the [[epicycloid]] with {{math|1=''d'' = ''r''}}. The classic [[Spirograph]] toy traces out epitrochoid and [[hypotrochoid]] curves. The paths of planets in the once popular geocentric system of [[deferent and epicycle|deferents and epicycles]] are epitrochoids with <math>d>r,</math> for both the outer planets and the inner planets. The orbit of the Moon, when centered around the Sun, approximates an epitrochoid. The [[combustion chamber]] of the [[Wankel engine]] is an epitrochoid with {{math|1=''R'' = 2}}, {{math|1=''r'' = 1}} and {{math|1=''d'' = 1}}. ==See also== * [[Cycloid]] * [[Cyclogon]] * [[Epicycloid]] * [[Hypocycloid]] * [[Hypotrochoid]] * [[Spirograph]] * [[List of periodic functions]] * [[Rosetta (orbit)]] * [[Apsidal precession]] ==References== * {{cite book | author=J. Dennis Lawrence | title=A catalog of special plane curves | publisher=Dover Publications | year=1972 | isbn=0-486-60288-5 | pages=[https://archive.org/details/catalogofspecial00lawr/page/160 160–164] | url-access=registration | url=https://archive.org/details/catalogofspecial00lawr/page/160 }} ==External links== *[http://www.cs.aau.dk/~marius/gallery/generator.html Epitrochoid generator] *{{MathWorld|Epitrochoid|Epitrochoid}} *[http://xahlee.org/SpecialPlaneCurves_dir/Epitrochoid_dir/epitrochoid.html Visual Dictionary of Special Plane Curves on Xah Lee 李杀网] *[http://gerdbreitenbach.de/planet/planet.html Interactive simulation of the geocentric graphical representation of planet paths ] *{{MacTutor|class=Curves|id=Epitrochoid|title=Epitrochoid}} *[http://sourceforge.net/p/geofun/wiki/Home/ Plot Epitrochoid -- GeoFun] [[Category:Roulettes (curve)]] [[ja:トロコイド#外トロコイド]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:IPAc-en
(
edit
)
Template:MacTutor
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)