Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Error function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Sigmoid shape special function}} {{Use dmy dates|date=March 2023}} {{Distinguish|Loss function}} In mathematics, the '''error function''' (also called the '''Gauss error function'''), often denoted by '''{{math|erf}}''', is a function <math>\mathrm{erf}: \mathbb{C} \to \mathbb{C}</math> defined as:<ref>{{cite book|last =Andrews|first = Larry C.|url = https://books.google.com/books?id=2CAqsF-RebgC&pg=PA110 |title = Special functions of mathematics for engineers|page = 110|publisher = SPIE Press |date= 1998|isbn = 9780819426161}}</ref> <math display="block">\operatorname{erf} z = \frac{2}{\sqrt\pi}\int_0^z e^{-t^2}\,\mathrm dt.</math> {{Infobox mathematical function | name = Error function | image = Error Function.svg | imagesize = 400px | imagealt = Plot of the error function over real numbers | caption = Plot of the error function over real numbers | general_definition = <math>\operatorname{erf} z = \frac{2}{\sqrt\pi}\int_0^z e^{-t^2}\,\mathrm dt</math> | fields_of_application = Probability, thermodynamics, digital communications | domain = <math>\mathbb{C}</math> | range = <math>\left( -1,1 \right)</math> | parity = Odd | root = 0 | derivative = <math>\frac{\mathrm d}{\mathrm dz}\operatorname{erf} z = \frac{2}{\sqrt\pi} e^{-z^2} </math> | antiderivative = <math>\int \operatorname{erf} z\,dz = z \operatorname{erf} z + \frac{e^{-z^2}}{\sqrt\pi} + C</math> | taylor_series = <math>\operatorname{erf} z = \frac{2}{\sqrt\pi} \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} \frac{z^{2n+1}}{n!}</math> }} The integral here is a complex [[Contour integration|contour integral]] which is path-independent because <math>\exp(-t^2)</math> is [[Holomorphic function|holomorphic]] on the whole complex plane <math>\mathbb{C}</math>. In many applications, the function argument is a real number, in which case the function value is also real. In some old texts,<ref>{{cite book |last1=Whittaker |first1=Edmund Taylor |title=A Course of Modern Analysis |title-link=A Course of Modern Analysis |last2=Watson |first2=George Neville |date=2021 |publisher=[[Cambridge University Press]] |isbn=978-1-316-51893-9 |editor-last=Moll |editor-first=Victor Hugo |editor-link=Victor Hugo Moll |edition=5th revised |page=358 |authorlink1=Edmund T. Whittaker |authorlink2=George N. Watson}}</ref> the error function is defined without the factor of <math>\frac{2}{\sqrt{\pi}}</math>. This [[nonelementary integral]] is a [[sigmoid function|sigmoid]] function that occurs often in [[probability]], [[statistics]], and [[partial differential equation]]s. In statistics, for non-negative real values of {{mvar|x}}, the error function has the following interpretation: for a real [[random variable]] {{mvar|Y}} that is [[normal distribution|normally distributed]] with [[mean]] 0 and [[standard deviation]] <math>\frac{1}{\sqrt{2}}</math>, {{math|erf ''x''}} is the probability that {{mvar|Y}} falls in the range {{closed-closed|−''x'', ''x''}}. Two closely related functions are the '''complementary error function''' <math>\mathrm{erfc}: \mathbb{C} \to \mathbb{C}</math> is defined as <math display="block">\operatorname{erfc} z = 1 - \operatorname{erf} z,</math> and the '''imaginary error function''' <math>\mathrm{erfi}: \mathbb{C} \to \mathbb{C}</math> is defined as <math display="block">\operatorname{erfi} z = -i\operatorname{erf} iz,</math> where {{mvar|i}} is the [[imaginary unit]]. ==Name== The name "error function" and its abbreviation {{math|erf}} were proposed by [[James Whitbread Lee Glaisher|J. W. L. Glaisher]] in 1871 on account of its connection with "the theory of Probability, and notably the theory of [[errors and residuals|Errors]]."<ref name="Glaisher1871a">{{cite journal|last1=Glaisher|first1=James Whitbread Lee|title= On a class of definite integrals|journal=London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science|date=July 1871 |volume=42 |pages=294–302|access-date=6 December 2017|url=https://books.google.com/books?id=8Po7AQAAMAAJ&pg=RA1-PA294 |number=277 |series=4 |doi=10.1080/14786447108640568}}</ref> The error function complement was also discussed by Glaisher in a separate publication in the same year.<ref name="Glaisher1871b">{{cite journal|last1=Glaisher|first1=James Whitbread Lee|title=On a class of definite integrals. Part II|journal=London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science|date=September 1871 |volume=42|pages=421–436|access-date=6 December 2017|url=https://books.google.com/books?id=yJ1YAAAAcAAJ&pg=PA421 |series=4 |number=279 |doi=10.1080/14786447108640600}}</ref> For the "law of facility" of errors whose [[probability density|density]] is given by <math display="block">f(x) = \left(\frac{c}{\pi}\right)^{1/2} e^{-c x^2}</math> (the [[normal distribution]]), Glaisher calculates the probability of an error lying between {{mvar|p}} and {{mvar|q}} as: <math display="block">\left(\frac{c}{\pi}\right)^\frac{1}{2} \int_p^qe^{-cx^2}\,\mathrm dx = \tfrac{1}{2}\left(\operatorname{erf} \left(q\sqrt{c}\right) -\operatorname{erf} \left(p\sqrt{c}\right)\right).</math> [[File:Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]] ==Applications== When the results of a series of measurements are described by a [[normal distribution]] with [[standard deviation]] {{mvar|σ}} and [[expected value]] 0, then {{math|erf ({{sfrac|''a''|''σ'' {{sqrt|2}}}})}} is the probability that the error of a single measurement lies between {{math|−''a''}} and {{math|+''a''}}, for positive {{mvar|a}}. This is useful, for example, in determining the [[bit error rate]] of a digital communication system. The error and complementary error functions occur, for example, in solutions of the [[heat equation]] when [[boundary condition]]s are given by the [[Heaviside step function]]. The error function and its approximations can be used to estimate results that hold [[with high probability]] or with low probability. Given a random variable {{math|''X'' ~ Norm[''μ'',''σ'']}} (a normal distribution with mean {{mvar|μ}} and standard deviation {{mvar|σ}}) and a constant {{math|''L'' > ''μ''}}, it can be shown via integration by substitution: <math display="block">\begin{align} \Pr[X\leq L] &= \frac{1}{2} + \frac{1}{2} \operatorname{erf}\frac{L-\mu}{\sqrt{2}\sigma} \\ &\approx A \exp \left(-B \left(\frac{L-\mu}{\sigma}\right)^2\right) \end{align}</math> where {{mvar|A}} and {{mvar|B}} are certain numeric constants. If {{mvar|L}} is sufficiently far from the mean, specifically {{math|''μ'' − ''L'' ≥ ''σ''{{sqrt|ln ''k''}}}}, then: <math display="block">\Pr[X\leq L] \leq A \exp (-B \ln{k}) = \frac{A}{k^B}</math> so the probability goes to 0 as {{math|''k'' → ∞}}. The probability for {{mvar|X}} being in the interval {{closed-closed|''L<sub>a</sub>'', ''L<sub>b</sub>''}} can be derived as <math display="block">\begin{align} \Pr[L_a\leq X \leq L_b] &= \int_{L_a}^{L_b} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \,\mathrm dx \\ &= \frac{1}{2}\left(\operatorname{erf}\frac{L_b-\mu}{\sqrt{2}\sigma} - \operatorname{erf}\frac{L_a-\mu}{\sqrt{2}\sigma}\right).\end{align}</math> ==Properties== {{multiple image | header = Plots in the complex plane | direction = vertical | width = 250 | image1 = ComplexExp2.png | caption1 = Integrand {{math|exp(−''z''<sup>2</sup>)}} | image2 = ComplexErfz.png | caption2 = {{math|erf ''z''}} }} The property {{math|1=erf (−''z'') = −erf ''z''}} means that the error function is an [[even and odd functions|odd function]]. This directly results from the fact that the integrand {{math|''e''<sup>−''t''<sup>2</sup></sup>}} is an [[even function]] (the antiderivative of an even function which is zero at the origin is an odd function and vice versa). Since the error function is an [[entire function]] which takes real numbers to real numbers, for any [[complex number]] {{mvar|z}}: <math display="block">\operatorname{erf} \overline{z} = \overline{\operatorname{erf} z} </math> where <math>\overline{z} </math> denotes the [[complex conjugate]] of <math>z</math>. The integrand {{math|1=''f'' = exp(−''z''<sup>2</sup>)}} and {{math|1=''f'' = erf ''z''}} are shown in the complex {{mvar|z}}-plane in the figures at right with [[domain coloring]]. The error function at {{math|+∞}} is exactly 1 (see [[Gaussian integral]]). At the real axis, {{math|erf ''z''}} approaches unity at {{math|''z'' → +∞}} and −1 at {{math|''z'' → −∞}}. At the imaginary axis, it tends to {{math|±''i''∞}}. <!-- ; the relation {{math|1=erf(−''z'') = −erf ''z''}} holds.!--> ===Taylor series=== The error function is an [[entire function]]; it has no singularities (except that at infinity) and its [[Taylor expansion]] always converges. For {{math|''x'' >> 1}}, however, cancellation of leading terms makes the Taylor expansion unpractical. The defining integral cannot be evaluated in [[Closed-form expression|closed form]] in terms of [[Elementary function (differential algebra)|elementary functions]] (see [[Liouville's theorem (differential algebra)|Liouville's theorem]]), but by expanding the [[integrand]] {{math|''e''<sup>−''z''<sup>2</sup></sup>}} into its [[Maclaurin series]] and integrating term by term, one obtains the error function's Maclaurin series as: <math display="block">\begin{align} \operatorname{erf} z &= \frac{2}{\sqrt\pi}\sum_{n=0}^\infty\frac{(-1)^n z^{2n+1}}{n! (2n+1)} \\[6pt] &= \frac{2}{\sqrt\pi} \left(z-\frac{z^3}{3}+\frac{z^5}{10}-\frac{z^7}{42}+\frac{z^9}{216}-\cdots\right) \end{align}</math> which holds for every [[complex number]] {{mvar|z}}. The denominator terms are sequence [[oeis:A007680|A007680]] in the [[OEIS]]. For iterative calculation of the above series, the following alternative formulation may be useful: <math display="block">\begin{align} \operatorname{erf} z &= \frac{2}{\sqrt\pi}\sum_{n=0}^\infty\left(z \prod_{k=1}^n {\frac{-(2k-1) z^2}{k (2k+1)}}\right) \\[6pt] &= \frac{2}{\sqrt\pi} \sum_{n=0}^\infty \frac{z}{2n+1} \prod_{k=1}^n \frac{-z^2}{k} \end{align}</math> because {{math|{{sfrac|−(2''k'' − 1)''z''<sup>2</sup>|''k''(2''k'' + 1)}}}} expresses the multiplier to turn the {{mvar|k}}th term into the {{math|(''k'' + 1)}}th term (considering {{mvar|z}} as the first term). The imaginary error function has a very similar Maclaurin series, which is: <math display="block">\begin{align} \operatorname{erfi} z &= \frac{2}{\sqrt\pi}\sum_{n=0}^\infty\frac{z^{2n+1}}{n! (2n+1)} \\[6pt] &=\frac{2}{\sqrt\pi} \left(z+\frac{z^3}{3}+\frac{z^5}{10}+\frac{z^7}{42}+\frac{z^9}{216}+\cdots\right) \end{align}</math> which holds for every [[complex number]] {{mvar|z}}. ===Derivative and integral=== The derivative of the error function follows immediately from its definition: <math display="block">\frac{\mathrm d}{\mathrm dz}\operatorname{erf} z =\frac{2}{\sqrt\pi} e^{-z^2}.</math> From this, the derivative of the imaginary error function is also immediate: <math display="block">\frac{d}{dz}\operatorname{erfi} z =\frac{2}{\sqrt\pi} e^{z^2}.</math> An [[antiderivative]] of the error function, obtainable by [[integration by parts]], is <math display="block">z\operatorname{erf}z + \frac{e^{-z^2}}{\sqrt\pi}+C.</math> An antiderivative of the imaginary error function, also obtainable by integration by parts, is <math display="block">z\operatorname{erfi}z - \frac{e^{z^2}}{\sqrt\pi}+C.</math> Higher order derivatives are given by <math display="block">\operatorname{erf}^{(k)}z = \frac{2 (-1)^{k-1}}{\sqrt\pi} \mathit{H}_{k-1}(z) e^{-z^2} = \frac{2}{\sqrt\pi} \frac{\mathrm d^{k-1}}{\mathrm dz^{k-1}} \left(e^{-z^2}\right),\qquad k=1, 2, \dots</math> where {{mvar|H}} are the physicists' [[Hermite polynomials]].<ref>{{mathworld|title=Erf|urlname=Erf}}</ref> ===Bürmann series=== An expansion,<ref>{{cite journal|first1=H. M. |last1=Schöpf |first2=P. H. |last2=Supancic |title=On Bürmann's Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion |journal=The Mathematica Journal |year=2014 |volume=16 |doi=10.3888/tmj.16-11 |url=http://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/|doi-access=free }}</ref> which converges more rapidly for all real values of {{mvar|x}} than a Taylor expansion, is obtained by using [[Hans Heinrich Bürmann]]'s theorem:<ref>{{mathworld|urlname=BuermannsTheorem | title = Bürmann's Theorem }}</ref> <math display="block">\begin{align} \operatorname{erf} x &= \frac{2}{\sqrt\pi} \sgn x \cdot \sqrt{1-e^{-x^2}} \left( 1-\frac{1}{12} \left (1-e^{-x^2} \right ) -\frac{7}{480} \left (1-e^{-x^2} \right )^2 -\frac{5}{896} \left (1-e^{-x^2} \right )^3-\frac{787}{276 480} \left (1-e^{-x^2} \right )^4 - \cdots \right) \\[10pt] &= \frac{2}{\sqrt\pi} \sgn x \cdot \sqrt{1-e^{-x^2}} \left(\frac{\sqrt\pi}{2} + \sum_{k=1}^\infty c_k e^{-kx^2} \right). \end{align}</math> where {{math|sgn}} is the [[sign function]]. By keeping only the first two coefficients and choosing {{math|1=''c''<sub>1</sub> = {{sfrac|31|200}}}} and {{math|1=''c''<sub>2</sub> = −{{sfrac|341|8000}}}}, the resulting approximation shows its largest relative error at {{math|1=''x'' = ±1.40587}}, where it is less than 0.0034361: <math display="block">\operatorname{erf} x \approx \frac{2}{\sqrt\pi}\sgn x \cdot \sqrt{1-e^{-x^2}} \left(\frac{\sqrt{\pi}}{2} + \frac{31}{200}e^{-x^2}-\frac{341}{8000} e^{-2x^2}\right). </math> ===Inverse functions=== [[File:Mplwp erf inv.svg|thumb|300px|Inverse error function]] Given a complex number {{mvar|z}}, there is not a ''unique'' complex number {{mvar|w}} satisfying {{math|1=erf ''w'' = ''z''}}, so a true inverse function would be multivalued. However, for {{math|−1 < ''x'' < 1}}, there is a unique ''real'' number denoted {{math|erf<sup>−1</sup> ''x''}} satisfying <math display="block">\operatorname{erf}\left(\operatorname{erf}^{-1} x\right) = x.</math> The '''inverse error function''' is usually defined with domain {{open-open|−1,1}}, and it is restricted to this domain in many computer algebra systems. However, it can be extended to the disk {{math|{{abs|''z''}} < 1}} of the complex plane, using the Maclaurin series<ref>{{cite arXiv | last1 = Dominici | first1 = Diego | title = Asymptotic analysis of the derivatives of the inverse error function | eprint = math/0607230 | year = 2006}}</ref> <math display="block">\operatorname{erf}^{-1} z=\sum_{k=0}^\infty\frac{c_k}{2k+1}\left (\frac{\sqrt\pi}{2}z\right )^{2k+1},</math> where {{math|1=''c''<sub>0</sub> = 1}} and <math display="block">\begin{align} c_k & =\sum_{m=0}^{k-1}\frac{c_m c_{k-1-m}}{(m+1)(2m+1)} \\[1ex] &= \left\{1,1,\frac{7}{6},\frac{127}{90},\frac{4369}{2520},\frac{34807}{16200},\ldots\right\}. \end{align}</math> So we have the series expansion (common factors have been canceled from numerators and denominators): <math display="block">\operatorname{erf}^{-1} z = \frac{\sqrt{\pi}}{2} \left (z + \frac{\pi}{12}z^3 + \frac{7\pi^2}{480}z^5 + \frac{127\pi^3}{40320}z^7 + \frac{4369\pi^4}{5806080} z^9 + \frac{34807\pi^5}{182476800}z^{11} + \cdots\right ).</math> (After cancellation the numerator and denominator values in {{oeis|A092676}} and {{oeis|A092677}} respectively; without cancellation the numerator terms are values in {{oeis|A002067}}.) The error function's value at {{math|±∞}} is equal to {{math|±1}}. For {{math|{{abs|''z''}} < 1}}, we have {{math|1=erf(erf<sup>−1</sup> ''z'') = ''z''}}. The '''inverse complementary error function''' is defined as <math display="block">\operatorname{erfc}^{-1}(1-z) = \operatorname{erf}^{-1} z.</math> For real {{mvar|x}}, there is a unique ''real'' number {{math|erfi<sup>−1</sup> ''x''}} satisfying {{math|1=erfi(erfi<sup>−1</sup> ''x'') = ''x''}}. The '''inverse imaginary error function''' is defined as {{math|erfi<sup>−1</sup> ''x''}}.<ref>{{cite arXiv | last1 = Bergsma | first1 = Wicher | title = On a new correlation coefficient, its orthogonal decomposition and associated tests of independence | eprint = math/0604627 | year = 2006}}</ref> For any real ''x'', [[Newton's method]] can be used to compute {{math|erfi<sup>−1</sup> ''x''}}, and for {{math|−1 ≤ ''x'' ≤ 1}}, the following Maclaurin series converges: <math display="block">\operatorname{erfi}^{-1} z =\sum_{k=0}^\infty\frac{(-1)^k c_k}{2k+1} \left( \frac{\sqrt\pi}{2} z \right)^{2k+1},</math> where {{math|''c''<sub>''k''</sub>}} is defined as above. ===Asymptotic expansion=== A useful [[asymptotic expansion]] of the complementary error function (and therefore also of the error function) for large real {{mvar|x}} is <math display="block">\begin{align} \operatorname{erfc} x &= \frac{e^{-x^2}}{x\sqrt{\pi}}\left(1 + \sum_{n=1}^\infty (-1)^n \frac{1\cdot3\cdot5\cdots(2n - 1)}{\left(2x^2\right)^n}\right) \\[6pt] &= \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n - 1)!!}{\left(2x^2\right)^n}, \end{align}</math> where {{math|(2''n'' − 1)!!}} is the [[double factorial]] of {{math|(2''n'' − 1)}}, which is the product of all odd numbers up to {{math|(2''n'' − 1)}}. This series diverges for every finite {{mvar|x}}, and its meaning as asymptotic expansion is that for any integer {{math|''N'' ≥ 1}} one has <math display="block">\operatorname{erfc} x = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^{N-1} (-1)^n \frac{(2n - 1)!!}{\left(2x^2\right)^n} + R_N(x)</math> where the remainder is <math display="block">R_N(x) := \frac{(-1)^N \, (2 N - 1)!!}{\sqrt{\pi} \cdot 2^{N - 1}} \int_x^\infty t^{-2N}e^{-t^2}\,\mathrm dt,</math> which follows easily by induction, writing <math display="block">e^{-t^2} = -\frac{1}{2 t} \, \frac{\mathrm{d}}{\mathrm{d}t} e^{-t^2}</math> and integrating by parts. The asymptotic behavior of the remainder term, in [[Landau notation]], is <math display="block">R_N(x) = O\left(x^{- (1 + 2N)} e^{-x^2}\right)</math> as {{math|''x'' → ∞}}. This can be found by <math display="block">R_N(x) \propto \int_x^\infty t^{-2N}e^{-t^2}\,\mathrm dt = e^{-x^2} \int_0^\infty (t+x)^{-2N}e^{-t^2-2tx}\,\mathrm dt\leq e^{-x^2} \int_0^\infty x^{-2N} e^{-2tx}\,\mathrm dt \propto x^{-(1+2N)}e^{-x^2}.</math> For large enough values of {{mvar|x}}, only the first few terms of this asymptotic expansion are needed to obtain a good approximation of {{math|erfc ''x''}} (while for not too large values of {{mvar|x}}, the above Taylor expansion at 0 provides a very fast convergence). ===Continued fraction expansion=== A [[continued fraction]] expansion of the complementary error function was found by [[Pierre-Simon Laplace|Laplace]]:<ref>[[Pierre-Simon Laplace]], [[Traité de mécanique céleste]], tome 4 (1805), livre X, page 255.</ref><ref>{{cite book| last1 = Cuyt | first1 = Annie A. M.|author1-link= Annie Cuyt | last2 = Petersen | first2 = Vigdis B. | last3 = Verdonk | first3 = Brigitte | last4 = Waadeland | first4 = Haakon | last5 = Jones | first5 = William B. | title = Handbook of Continued Fractions for Special Functions | publisher = Springer-Verlag | year = 2008 | isbn = 978-1-4020-6948-2 }}</ref> <math display="block">\operatorname{erfc} z = \frac{z}{\sqrt\pi}e^{-z^2} \cfrac{1}{z^2+ \cfrac{a_1}{1+\cfrac{a_2}{z^2+ \cfrac{a_3}{1+\dotsb}}}},\qquad a_m = \frac{m}{2}.</math> ===Factorial series=== The inverse [[factorial series]]: <math display="block">\begin{align} \operatorname{erfc} z &= \frac{e^{-z^2}}{\sqrt{\pi}\,z} \sum_{n=0}^\infty \frac{\left(-1\right)^n Q_n}{{\left(z^2+1\right)}^{\bar{n}}} \\[1ex] &= \frac{e^{-z^2}}{\sqrt{\pi}\,z} \left[1 -\frac{1}{2}\frac{1}{(z^2+1)} + \frac{1}{4}\frac{1}{\left(z^2+1\right) \left(z^2+2\right)} - \cdots \right] \end{align}</math> converges for {{math|Re(''z''<sup>2</sup>) > 0}}. Here <math display="block">\begin{align} Q_n &\overset{\text{def}}{{}={}} \frac{1}{\Gamma{\left(\frac{1}{2}\right)}} \int_0^\infty \tau(\tau-1)\cdots(\tau-n+1)\tau^{-\frac{1}{2}} e^{-\tau} \,d\tau \\[1ex] &= \sum_{k=0}^n \left(\frac{1}{2}\right)^{\bar{k}} s(n,k), \end{align}</math> {{math|''z''<sup>{{overline|''n''}}</sup>}} denotes the [[rising factorial]], and {{math|''s''(''n'',''k'')}} denotes a signed [[Stirling number of the first kind]].<ref>{{cite journal|last=Schlömilch|first=Oskar Xavier | author-link=Oscar Schlömilch|year=1859|title=Ueber facultätenreihen|url=https://archive.org/details/zeitschriftfrma09runggoog | journal=[[:de:Zeitschrift für Mathematik und Physik|Zeitschrift für Mathematik und Physik]] | language=de | volume=4 | pages=390–415}}</ref><ref>{{cite book | last=Nielson | first=Niels | url=https://archive.org/details/handbuchgamma00nielrich | title=Handbuch der Theorie der Gammafunktion | date=1906 | publisher=B. G. Teubner | location=Leipzig|language=de|access-date=2017-12-04|at=p. 283 Eq. 3}}</ref> There also exists a representation by an infinite sum containing the [[double factorial]]: <math display="block">\operatorname{erf} z = \frac{2}{\sqrt\pi} \sum_{n=0}^\infty \frac{(-2)^n(2n-1)!!}{(2n+1)!}z^{2n+1}</math> == Bounds and Numerical approximations == ===Approximation with elementary functions=== <ul> <li> [[Abramowitz and Stegun]] give several approximations of varying accuracy (equations 7.1.25–28). This allows one to choose the fastest approximation suitable for a given application. In order of increasing accuracy, they are: <math display="block">\operatorname{erf} x \approx 1 - \frac{1}{\left(1 + a_1x + a_2x^2 + a_3x^3 + a_4x^4\right)^4}, \qquad x \geq 0</math> (maximum error: {{val|5e-4}}) {{pb}} where {{math|''a''<sub>1</sub> {{=}} 0.278393}}, {{math|''a''<sub>2</sub> {{=}} 0.230389}}, {{math|''a''<sub>3</sub> {{=}} 0.000972}}, {{math|''a''<sub>4</sub> {{=}} 0.078108}} <math display="block">\operatorname{erf} x \approx 1 - \left(a_1t + a_2t^2 + a_3t^3\right)e^{-x^2},\quad t=\frac{1}{1 + px}, \qquad x \geq 0</math> (maximum error: {{val|2.5e-5}}) {{pb}} where {{math|''p'' {{=}} 0.47047}}, {{math|''a''<sub>1</sub> {{=}} 0.3480242}}, {{math|''a''<sub>2</sub> {{=}} −0.0958798}}, {{math|''a''<sub>3</sub> {{=}} 0.7478556}} <math display="block">\operatorname{erf} x \approx 1 - \frac{1}{\left(1 + a_1x + a_2x^2 + \cdots + a_6x^6\right)^{16}}, \qquad x \geq 0</math> (maximum error: {{val|3e-7}}) {{pb}} where {{math|''a''<sub>1</sub> {{=}} 0.0705230784}}, {{math|''a''<sub>2</sub> {{=}} 0.0422820123}}, {{math|''a''<sub>3</sub> {{=}} 0.0092705272}}, {{math|''a''<sub>4</sub> {{=}} 0.0001520143}}, {{math|''a''<sub>5</sub> {{=}} 0.0002765672}}, {{math|''a''<sub>6</sub> {{=}} 0.0000430638}} <math display="block">\operatorname{erf} x \approx 1 - \left(a_1t + a_2t^2 + \cdots + a_5t^5\right)e^{-x^2},\quad t = \frac{1}{1 + px}</math> (maximum error: {{val|1.5e-7}}) {{pb}} where {{math|''p'' {{=}} 0.3275911}}, {{math|''a''<sub>1</sub> {{=}} 0.254829592}}, {{math|''a''<sub>2</sub> {{=}} −0.284496736}}, {{math|''a''<sub>3</sub> {{=}} 1.421413741}}, {{math|''a''<sub>4</sub> {{=}} −1.453152027}}, {{math|''a''<sub>5</sub> {{=}} 1.061405429}} {{pb}} All of these approximations are valid for {{math|''x'' ≥ 0}}. To use these approximations for negative {{mvar|x}}, use the fact that {{math|erf ''x''}} is an odd function, so {{math|erf ''x'' {{=}} −erf(−''x'')}}. </li> <li> Exponential bounds and a pure exponential approximation for the complementary error function are given by<ref>{{cite journal |url = http://campus.unibo.it/85943/1/mcddmsTranWIR2003.pdf |last1= Chiani|first1= M.|last2= Dardari|first2= D. |last3=Simon |first3= M.K.|date = 2003 |title = New Exponential Bounds and Approximations for the Computation of Error Probability in Fading Channels|journal = IEEE Transactions on Wireless Communications|volume = 2|number=4|pages = 840–845| doi=10.1109/TWC.2003.814350 | citeseerx= 10.1.1.190.6761}}</ref> <math display="block">\begin{align} \operatorname{erfc} x &\leq \frac{1}{2}e^{-2 x^2} + \frac{1}{2}e^{- x^2} \leq e^{-x^2}, &\quad x &> 0 \\[1.5ex] \operatorname{erfc} x &\approx \frac{1}{6}e^{-x^2} + \frac{1}{2}e^{-\frac{4}{3} x^2}, &\quad x &> 0 . \end{align}</math> </li> <li> The above have been generalized to sums of {{mvar|N}} exponentials<ref>{{cite journal |doi=10.1109/TCOMM.2020.3006902 |title=Global minimax approximations and bounds for the Gaussian Q-function by sums of exponentials|journal=IEEE Transactions on Communications |year=2020 |last1=Tanash |first1=I.M. |last2=Riihonen |first2=T. |volume=68 |issue=10 |pages=6514–6524 |arxiv=2007.06939 |s2cid=220514754}}</ref> with increasing accuracy in terms of {{mvar|N}} so that {{math|erfc ''x''}} can be accurately approximated or bounded by {{math|2''Q̃''({{sqrt|2}}''x'')}}, where <math display="block">\tilde{Q}(x) = \sum_{n=1}^N a_n e^{-b_n x^2}.</math> In particular, there is a systematic methodology to solve the numerical coefficients {{math|{(''a<sub>n</sub>'',''b<sub>n</sub>'')}{{su|b=''n'' {{=}} 1|p=''N''}}}} that yield a [[minimax approximation algorithm|minimax]] approximation or bound for the closely related [[Q-function]]: {{math|''Q''(''x'') ≈ ''Q̃''(''x'')}}, {{math|''Q''(''x'') ≤ ''Q̃''(''x'')}}, or {{math|''Q''(''x'') ≥ ''Q̃''(''x'')}} for {{math|''x'' ≥ 0}}. The coefficients {{math|{(''a<sub>n</sub>'',''b<sub>n</sub>'')}{{su|b=''n'' {{=}} 1|p=''N''}}}} for many variations of the exponential approximations and bounds up to {{math|''N'' {{=}} 25}} have been released to open access as a comprehensive dataset.<ref>{{cite journal | doi=10.5281/zenodo.4112978 | title=Coefficients for Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials [Data set] | url=https://zenodo.org/record/4112978 | website=Zenodo | year=2020 | last1=Tanash | first1=I.M. | last2=Riihonen | first2=T.}}</ref></li> <li> A tight approximation of the complementary error function for {{math|''x'' ∈ [0,∞)}} is given by [[George Karagiannidis|Karagiannidis]] & Lioumpas (2007)<ref>{{cite journal|last1=Karagiannidis |first1=G. K. |last2=Lioumpas |first2=A. S. |url=http://users.auth.gr/users/9/3/028239/public_html/pdf/Q_Approxim.pdf |title=An improved approximation for the Gaussian Q-function |date=2007 |journal=IEEE Communications Letters |volume=11 |issue=8 |pages=644–646|doi=10.1109/LCOMM.2007.070470 |s2cid=4043576 }}</ref> who showed for the appropriate choice of parameters {{math|{''A'',''B''}<nowiki/>}} that <math display="block">\operatorname{erfc} x \approx \frac{\left(1 - e^{-Ax}\right)e^{-x^2}}{B\sqrt{\pi} x}.</math> They determined {{math|{''A'',''B''} {{=}} {1.98,1.135}<nowiki/>}}, which gave a good approximation for all {{math|''x'' ≥ 0}}. Alternative coefficients are also available for tailoring accuracy for a specific application or transforming the expression into a tight bound.<ref>{{cite journal |doi=10.1109/LCOMM.2021.3052257|title=Improved coefficients for the Karagiannidis–Lioumpas approximations and bounds to the Gaussian Q-function|journal=IEEE Communications Letters | year=2021 | last1=Tanash | first1=I.M.|last2=Riihonen|first2=T.|volume=25|issue=5|pages=1468–1471|arxiv=2101.07631|s2cid=231639206}}</ref> </li> <li> A single-term lower bound is<ref>{{cite journal |last1=Chang |first1=Seok-Ho |last2=Cosman |first2=Pamela C. |author-link2 = Pamela Cosman |last3=Milstein |first3=Laurence B. |date=November 2011 |title=Chernoff-Type Bounds for the Gaussian Error Function |url=http://escholarship.org/uc/item/6hw4v7pg |journal=IEEE Transactions on Communications |volume=59 |issue=11 |pages=2939–2944 |doi=10.1109/TCOMM.2011.072011.100049 |s2cid=13636638}}</ref> <math display="block" display="block">\operatorname{erfc} x \geq \sqrt{\frac{2 e}{\pi}} \frac{\sqrt{\beta - 1}}{\beta} e^{- \beta x^2}, \qquad x \ge 0,\quad \beta > 1,</math> where the parameter {{mvar|β}} can be picked to minimize error on the desired interval of approximation. </li> <li> Another approximation is given by Sergei Winitzki using his "global Padé approximations":<ref>{{cite book |last=Winitzki |first=Sergei |title=Computational Science and Its Applications – ICCSA 2003 |date=2003 |volume=2667 |chapter=Uniform approximations for transcendental functions |publisher=Springer, Berlin |pages=[https://archive.org/details/computationalsci0000iccs_a2w6/page/780 780–789] |isbn=978-3-540-40155-1 |doi=10.1007/3-540-44839-X_82 |chapter-url-access=registration |chapter-url=https://archive.org/details/computationalsci0000iccs_a2w6 |series=Lecture Notes in Computer Science }}</ref><ref>{{cite journal|last1=Zeng |first1=Caibin |last2=Chen |first2=Yang Cuan |title=Global Padé approximations of the generalized Mittag-Leffler function and its inverse |journal=Fractional Calculus and Applied Analysis |date=2015 |volume=18 |issue=6 | pages=1492–1506 |doi= 10.1515/fca-2015-0086 |quote=Indeed, Winitzki [32] provided the so-called global Padé approximation | arxiv=1310.5592 |s2cid=118148950 }}</ref>{{rp|2–3}} <math display="block">\operatorname{erf} x \approx \sgn x \cdot \sqrt{1 - \exp\left(-x^2\frac{\frac{4}{\pi} + ax^2}{1 + ax^2}\right)}</math> where <math display="block">a = \frac{8(\pi - 3)}{3\pi(4 - \pi)} \approx 0.140012.</math> This is designed to be very accurate in a neighborhood of 0 and a neighborhood of infinity, and the ''relative'' error is less than 0.00035 for all real {{mvar|x}}. Using the alternate value {{math|''a'' ≈ 0.147}} reduces the maximum relative error to about 0.00013.<ref>{{Cite web <!-- Deny Citation Bot--> |url=https://www.academia.edu/9730974/A_handy_approximation_for_the_error_function_and_its_inverse |last=Winitzki |first=Sergei |date=6 February 2008 |title=A handy approximation for the error function and its inverse }}</ref> {{pb}} This approximation can be inverted to obtain an approximation for the inverse error function: <math display="block">\operatorname{erf}^{-1}x \approx \sgn x \cdot \sqrt{\sqrt{\left(\frac{2}{\pi a} + \frac{\ln\left(1 - x^2\right)}{2}\right)^2 - \frac{\ln\left(1 - x^2\right)}{a}} -\left(\frac{2}{\pi a} + \frac{\ln\left(1 - x^2\right)}{2}\right)}.</math> </li> <li> An approximation with a maximal error of {{val|1.2e-7}} for any real argument is:<ref>{{cite book | last = Press | first = William H. | title = Numerical Recipes in Fortran 77: The Art of Scientific Computing | isbn = 0-521-43064-X | year = 1992 | page = 214 | publisher = Cambridge University Press }}</ref> <math display="block">\operatorname{erf} x = \begin{cases} 1-\tau & x\ge 0\\ \tau-1 & x < 0 \end{cases}</math> with <math display="block">\begin{align} \tau &= t\cdot\exp\left(-x^2-1.26551223+1.00002368 t+0.37409196 t^2+0.09678418 t^3 -0.18628806 t^4\right.\\ &\left. \qquad\qquad\qquad +0.27886807 t^5-1.13520398 t^6+1.48851587 t^7 -0.82215223 t^8+0.17087277 t^9\right) \end{align}</math> and <math display="block">t = \frac{1}{1 + \frac{1}{2}|x|}.</math> </li> <li>An approximation of <math>\operatorname{erfc}</math> with a maximum relative error less than <math>2^{-53}</math> <math>\left(\approx 1.1 \times 10^{-16}\right)</math> in absolute value is:<ref>{{Cite journal | last = Dia | first = Yaya D. |date = 2023 | title = Approximate Incomplete Integrals, Application to Complementary Error Function | url = https://www.ssrn.com/abstract=4487559 | journal = SSRN Electronic Journal | language = en | doi = 10.2139/ssrn.4487559 | issn = 1556-5068}}</ref> for {{nowrap|<math>x\ge 0</math>,}} <math display="block">\begin{aligned} \operatorname{erfc} \left(x\right) & = \left(\frac{0.56418958354775629}{x+2.06955023132914151}\right) \left(\frac{x^2+2.71078540045147805 x+5.80755613130301624}{x^2+3.47954057099518960 x+12.06166887286239555}\right) \\ & \left(\frac{x^2+3.47469513777439592 x+12.07402036406381411}{x^2+3.72068443960225092 x+8.44319781003968454}\right) \left(\frac{x^2+4.00561509202259545 x+9.30596659485887898}{x^2+3.90225704029924078 x+6.36161630953880464}\right) \\ & \left(\frac{x^2+5.16722705817812584 x+9.12661617673673262}{x^2+4.03296893109262491 x+5.13578530585681539}\right) \left(\frac{x^2+5.95908795446633271 x+9.19435612886969243}{x^2+4.11240942957450885 x+4.48640329523408675}\right) e^{-x^2} \\ \end{aligned}</math> and for <math>x<0</math> <math display="block">\operatorname{erfc} \left(x\right) = 2 - \operatorname{erfc} \left(-x\right)</math> </li> <li> A simple approximation for real-valued arguments could be done through [[Hyperbolic functions]]: <math display="block">\operatorname{erf} \left(x\right) \approx z(x) = \tanh\left(\frac{2}{\sqrt{\pi}}\left(x+\frac{11}{123}x^3\right)\right)</math> which keeps the absolute difference {{nowrap|<math>\left|\operatorname{erf} \left(x\right)-z(x)\right| < 0.000358,\, \forall x</math>.}} </li> <li> Since the error function and the Gaussian Q-function are closely related through the identity <math>\operatorname{erfc}(x) = 2 Q(\sqrt{2} x)</math> or equivalently <math>Q(x) = \frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)</math>, bounds developed for the Q-function can be adapted to approximate the complementary error function. A pair of tight lower and upper bounds on the Gaussian Q-function for positive arguments <math>x \in [0, \infty)</math> was introduced by Abreu (2012)<ref>{{cite journal |doi=10.1109/TCOMM.2012.080612.110075 |title=Very Simple Tight Bounds on the Q-Function |journal=IEEE Transactions on Communications |volume=60 |issue=9 |pages=2415–2420 |year=2012 |last=Abreu |first=Giuseppe}}</ref> based on a simple algebraic expression with only two exponential terms: <math display="block">Q(x) \geq \frac{1}{12} e^{-x^2} + \frac{1}{\sqrt{2\pi} (x + 1)} e^{-x^2 / 2}, \qquad x \geq 0,</math> and <math display="block">Q(x) \leq \frac{1}{50} e^{-x^2} + \frac{1}{2 (x + 1)} e^{-x^2 / 2}, \qquad x \geq 0.</math> These bounds stem from a unified form <math display="block">Q_{\mathrm{B}}(x; a, b) = \frac{\exp(-x^2)}{a} + \frac{\exp(-x^2 / 2)}{b (x + 1)},</math> where the parameters <math>a</math> and <math>b</math> are selected to ensure the bounding properties: for the lower bound, <math>a_{\mathrm{L}} = 12</math> and <math>b_{\mathrm{L}} = \sqrt{2\pi}</math>, and for the upper bound, <math>a_{\mathrm{U}} = 50</math> and <math>b_{\mathrm{U}} = 2</math>. These expressions maintain simplicity and tightness, providing a practical trade-off between accuracy and ease of computation. They are particularly valuable in theoretical contexts, such as communication theory over fading channels, where both functions frequently appear. Additionally, the original Q-function bounds can be extended to <math>Q^n(x)</math> for positive integers <math>n</math> via the binomial theorem, suggesting potential adaptability for powers of <math>\operatorname{erfc}(x)</math>, though this is less commonly required in error function applications. </li> </ul> ===Table of values=== {{further|Interval estimation|Coverage probability|68–95–99.7 rule}} {| class="wikitable" style="text-align:left;margin-left:24pt" ! {{math|''x''}}!! {{math|erf ''x''}} !! {{math|1 − erf ''x''}} |- |0 || {{val|0}} || {{val|1}} |- |0.02|| {{val|0.022564575}} || {{val|0.977435425}} |- |0.04|| {{val|0.045111106}} || {{val|0.954888894}} |- |0.06|| {{val|0.067621594}} || {{val|0.932378406}} |- |0.08|| {{val|0.090078126}} || {{val|0.909921874}} |- |0.1 || {{val|0.112462916}} || {{val|0.887537084}} |- |0.2 || {{val|0.222702589}} || {{val|0.777297411}} |- |0.3 || {{val|0.328626759}} || {{val|0.671373241}} |- |0.4 || {{val|0.428392355}} || {{val|0.571607645}} |- |0.5 || {{val|0.520499878}} || {{val|0.479500122}} |- |0.6 || {{val|0.603856091}} || {{val|0.396143909}} |- |0.7 || {{val|0.677801194}} || {{val|0.322198806}} |- |0.8 || {{val|0.742100965}} || {{val|0.257899035}} |- |0.9 || {{val|0.796908212}} || {{val|0.203091788}} |- |1 || {{val|0.842700793}} || {{val|0.157299207}} |- |1.1 || {{val|0.880205070}} || {{val|0.119794930}} |- |1.2 || {{val|0.910313978}} || {{val|0.089686022}} |- |1.3 || {{val|0.934007945}} || {{val|0.065992055}} |- |1.4 || {{val|0.952285120}} || {{val|0.047714880}} |- |1.5 || {{val|0.966105146}} || {{val|0.033894854}} |- |1.6 || {{val|0.976348383}} || {{val|0.023651617}} |- |1.7 || {{val|0.983790459}} || {{val|0.016209541}} |- |1.8 || {{val|0.989090502}} || {{val|0.010909498}} |- |1.9 || {{val|0.992790429}} || {{val|0.007209571}} |- |2 || {{val|0.995322265}} || {{val|0.004677735}} |- |2.1 || {{val|0.997020533}} || {{val|0.002979467}} |- |2.2 || {{val|0.998137154}} || {{val|0.001862846}} |- |2.3 || {{val|0.998856823}} || {{val|0.001143177}} |- |2.4 || {{val|0.999311486}} || {{val|0.000688514}} |- |2.5 || {{val|0.999593048}} || {{val|0.000406952}} |- |3 || {{val|0.999977910}} || {{val|0.000022090}} |- |3.5 || {{val|0.999999257}} || {{val|0.000000743}} |} ==Related functions== ===Complementary error function=== The '''complementary error function''', denoted {{math|erfc}}, is defined as [[File:Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]] <math display="block">\begin{align} \operatorname{erfc} x & = 1-\operatorname{erf} x \\[5pt] & = \frac{2}{\sqrt\pi} \int_x^\infty e^{-t^2}\,\mathrm dt \\[5pt] & = e^{-x^2} \operatorname{erfcx} x, \end{align} </math> which also defines {{math|erfcx}}, the '''scaled complementary error function'''<ref name=Cody93>{{Citation |first=W. J. |last=Cody |title=Algorithm 715: SPECFUN—A portable FORTRAN package of special function routines and test drivers |url=http://www.stat.wisc.edu/courses/st771-newton/papers/p22-cody.pdf |journal=[[ACM Trans. Math. Softw.]] |volume=19 |issue=1 |pages=22–32 |date=March 1993 |doi=10.1145/151271.151273|citeseerx=10.1.1.643.4394 |s2cid=5621105 }}</ref> (which can be used instead of {{math|erfc}} to avoid [[arithmetic underflow]]<ref name=Cody93/><ref name=Zaghloul07>{{Citation |first=M. R. |last=Zaghloul |title=On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand | journal = [[Monthly Notices of the Royal Astronomical Society]] |volume=375 |issue=3 |pages=1043–1048 |date=1 March 2007 |doi=10.1111/j.1365-2966.2006.11377.x|bibcode=2007MNRAS.375.1043Z |doi-access=free }}</ref>). Another form of {{math|erfc ''x''}} for {{math|''x'' ≥ 0}} is known as Craig's formula, after its discoverer:<ref>John W. Craig, [http://wsl.stanford.edu/~ee359/craig.pdf ''A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations''] {{Webarchive|url=https://web.archive.org/web/20120403231129/http://wsl.stanford.edu/~ee359/craig.pdf |date=3 April 2012 }}, Proceedings of the 1991 IEEE Military Communication Conference, vol. 2, pp. 571–575.</ref> <math display="block">\operatorname{erfc} (x \mid x\ge 0) = \frac{2}{\pi} \int_0^\frac{\pi}{2} \exp \left( - \frac{x^2}{\sin^2 \theta} \right) \, \mathrm d\theta.</math> This expression is valid only for positive values of {{mvar|x}}, but it can be used in conjunction with {{math|erfc ''x'' {{=}} 2 − erfc(−''x'')}} to obtain {{math|erfc(''x'')}} for negative values. This form is advantageous in that the range of integration is fixed and finite. An extension of this expression for the {{math|erfc}} of the sum of two non-negative variables is as follows:<ref>{{cite journal |doi=10.1109/TCOMM.2020.2986209 |title=A Novel Extension to Craig's Q-Function Formula and Its Application in Dual-Branch EGC Performance Analysis|journal=IEEE Transactions on Communications |volume=68 |issue=7 |pages=4117–4125 |year=2020 |last1=Behnad |first1=Aydin |s2cid=216500014}}</ref> <math display="block">\operatorname{erfc} (x+y \mid x,y\ge 0) = \frac{2}{\pi} \int_0^\frac{\pi}{2} \exp \left( - \frac{x^2}{\sin^2 \theta} - \frac{y^2}{\cos^2 \theta} \right) \,\mathrm d\theta.</math> ===Imaginary error function=== The '''imaginary error function''', denoted {{math|erfi}}, is defined as [[File:Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]] <math display="block">\begin{align} \operatorname{erfi} x & = -i\operatorname{erf} ix \\[5pt] & = \frac{2}{\sqrt\pi} \int_0^x e^{t^2}\,\mathrm dt \\[5pt] & = \frac{2}{\sqrt\pi} e^{x^2} D(x), \end{align} </math> where {{math|''D''(''x'')}} is the [[Dawson function]] (which can be used instead of {{math|erfi}} to avoid [[arithmetic overflow]]<ref name=Cody93/>). Despite the name "imaginary error function", {{math|erfi ''x''}} is real when {{mvar|x}} is real. When the error function is evaluated for arbitrary [[complex number|complex]] arguments {{mvar|z}}, the resulting '''complex error function''' is usually discussed in scaled form as the [[Faddeeva function]]: <math display="block">w(z) = e^{-z^2}\operatorname{erfc}(-iz) = \operatorname{erfcx}(-iz).</math> ===Cumulative distribution function=== The error function is essentially identical to the standard [[normal cumulative distribution function]], denoted {{math|Φ}}, also named {{math|norm(''x'')}} by some software languages{{Citation needed|date=July 2020}}, as they differ only by scaling and translation. Indeed, [[File:Normal cumulative distribution function complex plot in Mathematica 13.1 with ComplexPlot3D.svg|alt=the normal cumulative distribution function plotted in the complex plane|thumb|the normal cumulative distribution function plotted in the complex plane]] <math display="block">\begin{align} \Phi(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^\tfrac{-t^2}{2}\,\mathrm dt\\[6pt] &= \frac{1}{2} \left(1+\operatorname{erf}\frac{x}{\sqrt 2}\right)\\[6pt] &= \frac{1}{2} \operatorname{erfc}\left(-\frac{x}{\sqrt 2}\right) \end{align}</math> or rearranged for {{math|erf}} and {{math|erfc}}: <math display="block">\begin{align} \operatorname{erf}(x) &= 2 \Phi{\left ( x \sqrt{2} \right )} - 1 \\[6pt] \operatorname{erfc}(x) &= 2 \Phi{\left ( - x \sqrt{2} \right )} \\ &= 2\left(1 - \Phi{\left ( x \sqrt{2} \right)}\right). \end{align}</math> Consequently, the error function is also closely related to the [[Q-function]], which is the tail probability of the standard normal distribution. The Q-function can be expressed in terms of the error function as <math display="block">\begin{align} Q(x) &= \frac{1}{2} - \frac{1}{2} \operatorname{erf} \frac{x}{\sqrt 2}\\ &= \frac{1}{2}\operatorname{erfc}\frac{x}{\sqrt 2}. \end{align}</math> The [[inverse function|inverse]] of {{math|Φ}} is known as the [[Quantile function|normal quantile function]], or [[probit]] function and may be expressed in terms of the inverse error function as <math display="block">\operatorname{probit}(p) = \Phi^{-1}(p) = \sqrt{2}\operatorname{erf}^{-1}(2p-1) = -\sqrt{2}\operatorname{erfc}^{-1}(2p).</math> The standard normal cdf is used more often in probability and statistics, and the error function is used more often in other branches of mathematics. The error function is a special case of the [[Mittag-Leffler function]], and can also be expressed as a [[confluent hypergeometric function]] (Kummer's function): <math display="block">\operatorname{erf} x = \frac{2x}{\sqrt\pi} M\left(\tfrac{1}{2},\tfrac{3}{2},-x^2\right).</math> It has a simple expression in terms of the [[Fresnel integral]].{{Elucidate|date=May 2012}} In terms of the [[regularized gamma function]] {{mvar|P}} and the [[incomplete gamma function]], <math display="block">\operatorname{erf} x = \sgn x \cdot P\left(\tfrac{1}{2}, x^2\right) = \frac{\sgn x}{\sqrt\pi} \gamma{\left(\tfrac{1}{2}, x^2\right)}.</math>{{math|sgn ''x''}} is the [[sign function]]. ===Iterated integrals of the complementary error function=== The iterated integrals of the complementary error function are defined by<ref>{{cite book | last1 = Carslaw | first1 = H. S. |author1-link = Horatio Scott Carslaw | last2 = Jaeger | first2 = J. C.| author2-link = John Conrad Jaeger | year = 1959 | title = Conduction of Heat in Solids | edition = 2nd | publisher = Oxford University Press | isbn = 978-0-19-853368-9 | page = 484}}</ref> <math display="block">\begin{align} i^n\!\operatorname{erfc} z &= \int_z^\infty i^{n-1}\!\operatorname{erfc} \zeta\,\mathrm d\zeta \\[6pt] i^0\!\operatorname{erfc} z &= \operatorname{erfc} z \\ i^1\!\operatorname{erfc} z &= \operatorname{ierfc} z = \frac{1}{\sqrt\pi} e^{-z^2} - z \operatorname{erfc} z \\ i^2\!\operatorname{erfc} z &= \tfrac{1}{4} \left( \operatorname{erfc} z -2 z \operatorname{ierfc} z \right) \\ \end{align}</math> The general recurrence formula is <math display="block">2 n \cdot i^n\!\operatorname{erfc} z = i^{n-2}\!\operatorname{erfc} z -2 z \cdot i^{n-1}\!\operatorname{erfc} z</math> They have the power series <math display="block">i^n\!\operatorname{erfc} z =\sum_{j=0}^\infty \frac{(-z)^j}{2^{n-j}j! \,\Gamma \left( 1 + \frac{n-j}{2}\right)},</math> from which follow the symmetry properties <math display="block">i^{2m}\!\operatorname{erfc} (-z) =-i^{2m}\!\operatorname{erfc} z +\sum_{q=0}^m \frac{z^{2q}}{2^{2(m-q)-1}(2q)! (m-q)!}</math> and <math display="block">i^{2m+1}\!\operatorname{erfc}(-z) =i^{2m+1}\!\operatorname{erfc} z +\sum_{q=0}^m \frac{z^{2q+1}}{2^{2(m-q)-1}(2q+1)! (m-q)!}. </math> ==Implementations== ===As real function of a real argument=== * In [[POSIX]]-compliant operating systems, the header <code>[[math.h]]</code> shall declare and the mathematical library <code>[[libm]]</code> shall provide the functions <code>erf</code> and <code>erfc</code> ([[double precision]]) as well as their [[single precision]] and [[extended precision]] counterparts <code>erff</code>, <code>erfl</code> and <code>erfcf</code>, <code>erfcl</code>.<ref>{{cite web | url = https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/math.h.html | access-date = 21 April 2023 | website = opengroup.org | title = math.h - mathematical declarations | year = 2018 | issue = 7}}</ref> * The [[GNU Scientific Library]] provides <code>erf</code>, <code>erfc</code>, <code>log(erf)</code>, and scaled error functions.<ref>{{Cite web|url=https://www.gnu.org/software/gsl/doc/html/specfunc.html#error-functions|title = Special Functions – GSL 2.7 documentation}}</ref> ===As complex function of a complex argument=== * <code>[https://jugit.fz-juelich.de/mlz/libcerf libcerf]</code>, numeric C library for complex error functions, provides the complex functions <code>cerf</code>, <code>cerfc</code>, <code>cerfcx</code> and the real functions <code>erfi</code>, <code>erfcx</code> with approximately 13–14 digits precision, based on the [[Faddeeva function]] as implemented in the [http://ab-initio.mit.edu/Faddeeva MIT Faddeeva Package] ==References== {{Reflist}} ==Further reading== * {{AS ref |7|297}} *{{Citation |last1=Press |first1=William H. |last2=Teukolsky |first2=Saul A. |last3=Vetterling |first3=William T. |last4=Flannery |first4=Brian P. |year=2007 |title=Numerical Recipes: The Art of Scientific Computing |edition=3rd |publisher=Cambridge University Press |location=New York |isbn=978-0-521-88068-8 |chapter=Section 6.2. Incomplete Gamma Function and Error Function |chapter-url=http://apps.nrbook.com/empanel/index.html#pg=259 |access-date=9 August 2011 |archive-date=11 August 2011 |archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=259 |url-status=dead }} *{{dlmf|id=7|title=Error Functions, Dawson’s and Fresnel Integrals|first=Nico M. |last=Temme }} ==External links== * [http://nvlpubs.nist.gov/nistpubs/jres/73B/jresv73Bn1p1_A1b.pdf A Table of Integrals of the Error Functions] {{Nonelementary Integral}} {{Authority control}} [[Category:Special hypergeometric functions]] [[Category:Gaussian function]] [[Category:Functions related to probability distributions]] [[Category:Analytic functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:AS ref
(
edit
)
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Closed-closed
(
edit
)
Template:Distinguish
(
edit
)
Template:Dlmf
(
edit
)
Template:Elucidate
(
edit
)
Template:Further
(
edit
)
Template:Infobox mathematical function
(
edit
)
Template:Math
(
edit
)
Template:Mathworld
(
edit
)
Template:Multiple image
(
edit
)
Template:Mvar
(
edit
)
Template:Nonelementary Integral
(
edit
)
Template:Nowrap
(
edit
)
Template:Oeis
(
edit
)
Template:Open-open
(
edit
)
Template:Pb
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)
Template:Use dmy dates
(
edit
)
Template:Val
(
edit
)
Template:Webarchive
(
edit
)