Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler's constant
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Difference between logarithm and harmonic series}} {{Redirect|0.577||.577 (disambiguation){{!}}.577}} {{distinguish|text = [[Euler's number]], {{math|e ≈ ''2.71828''}}, the base of the natural logarithm}} {{Use shortened footnotes|date=May 2021}} {{log(x)}} {{Infobox mathematical constant | name = Euler's constant | symbol = {{mvar|γ}} | type = Unknown | fields_of_application = {{flatlist | * [[Number theory]] * [[Mathematical analysis|Analysis]] }} | approximation = 0.57721...{{r|A001620}} | discovery_date = 1734 | discovery_person = [[Leonhard Euler]] | discovery_work = ''De Progressionibus harmonicis observationes'' | named_after = {{flatlist | * [[Leonhard Euler]] * [[Lorenzo Mascheroni]] }} }} [[File:gamma-area.svg|thumb|237px|right|The area of the blue region converges to Euler's constant.]] '''Euler's constant''' (sometimes called the '''Euler–Mascheroni constant''') is a [[mathematical constant]], usually denoted by the lowercase Greek letter [[gamma]] ({{math|''γ''}}), defined as the [[limit of a sequence|limiting]] difference between the [[harmonic series (mathematics)|harmonic series]] and the [[natural logarithm]], denoted here by {{math|log}}: <math display="block">\begin{align} \gamma &= \lim_{n\to\infty}\left(-\log n + \sum_{k=1}^n \frac1{k}\right)\\[5px] &=\int_1^\infty\left(-\frac1x+\frac1{\lfloor x\rfloor}\right)\,\mathrm dx. \end{align}</math> Here, {{math|⌊·⌋}} represents the [[floor and ceiling functions|floor function]]. The numerical value of Euler's constant, to 50 [[Decimal Places|decimal places]], is:{{r|A001620}} {{block indent|{{gaps|0.57721|56649|01532|86060|65120|90082|40243|10421|59335|93992|...}} }} == History == The constant first appeared in a 1734 paper by the Swiss mathematician [[Leonhard Euler]], titled ''De Progressionibus harmonicis observationes'' (Eneström Index 43), where he described it as "worthy of serious consideration".<ref name=":3" />{{sfn|Lagarias|2013}} Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Euler used the notations {{math|''C''}} and {{math|''O''}} for the constant. The Italian mathematician [[Lorenzo Mascheroni]] attempted to calculate the constant to 32 decimal places, but made errors in the 20th–22nd and 31st–32nd decimal places; starting from the 20th digit, he calculated ...'''181'''12090082'''39''' when the correct value is ...'''065'''12090082'''40'''. In 1790, he used the notations {{math|''A''}} and {{math|''a''}} for the constant. Other computations were done by [[Johann Georg von Soldner|Johann von Soldner]] in 1809, who used the notation {{math|''H''}}. The notation {{math|''γ''}} appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time, perhaps because of the constant's connection to the [[gamma function]].{{sfn|Lagarias|2013}} For example, the German mathematician [[Carl Anton Bretschneider]] used the notation {{math|''γ''}} in 1835,{{sfn|Bretschneider|1837|loc="{{math|1=''γ'' = ''c''}} = {{gaps|0,577215|664901|532860|618112|090082|3...}}" on [https://books.google.com/books?hl=fi&id=OAoPAAAAIAAJ&pg=PA260 p. 260]}} and [[Augustus De Morgan]] used it in a textbook published in parts from 1836 to 1842.{{r|DeMorgan183642}} Euler's constant was also studied by the Indian mathematician [[Srinivasa Ramanujan]] who published one paper on it in 1917.<ref>{{Cite book |last=Brent |first=Richard P. |date=1994 |chapter=Ramanujan and Euler's Constant |title=Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics |series=Proceedings of Symposia in Applied Mathematics |chapter-url=https://maths-people.anu.edu.au/~brent/pd/Euler_CARMA_10.pdf |volume=48 |pages=541–545|doi=10.1090/psapm/048/1314887 |isbn=978-0-8218-0291-5 }}</ref> [[David Hilbert]] mentioned the irrationality of {{math|''γ''}} as an unsolved problem that seems "unapproachable" and, allegedly, the English mathematician [[G. H. Hardy|Godfrey Hardy]] offered to give up his [[Savilian Professor of Geometry|Savilian Chair]] at [[Oxford]] to anyone who could prove this.<ref name=":3" /> == Appearances == Euler's constant appears frequently in mathematics, especially in [[number theory]] and [[Mathematical analysis|analysis]].<ref>{{Cite web |last=Sondow |first=Jonathan |date=2004 |title=The Euler constant: γ |url=http://numbers.computation.free.fr/Constants/Gamma/gamma.html |access-date=2024-11-01}}</ref> Examples include, among others, the following places: (''where'' ''<nowiki/>'*' means that this entry contains an explicit equation''): ===Analysis=== * The Weierstrass product formula for the [[gamma function]] and the [[Barnes G-function]].<ref name="Davis">{{cite journal |last=Davis |first=P. J. |date=1959 |title=Leonhard Euler's Integral: A Historical Profile of the Gamma Function |url=http://mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=3104 |url-status=dead |journal=[[American Mathematical Monthly]] |volume=66 |issue=10 |pages=849–869 |doi=10.2307/2309786 |jstor=2309786 |archive-url=https://web.archive.org/web/20121107190256/http://mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=3104 |archive-date=7 November 2012 |access-date=3 December 2016}}</ref><ref>{{Cite web |title=DLMF: §5.17 Barnes' 𝐺-Function (Double Gamma Function) ‣ Properties ‣ Chapter 5 Gamma Function |url=https://dlmf.nist.gov/5.17 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> * The [[Particular values of the gamma function#General rational argument|asymptotic expansion]] of the gamma function, <math>\Gamma(1/x)\sim x-\gamma</math>. * Evaluations of the [[digamma function]] at rational values.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Digamma Function |url=https://mathworld.wolfram.com/DigammaFunction.html |access-date=2024-10-30 |website=mathworld.wolfram.com |language=en}}</ref> * The [[Laurent series]] expansion for the [[Riemann zeta function]]*, where it is the first of the [[Stieltjes constants]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Stieltjes Constants |url=https://mathworld.wolfram.com/StieltjesConstants.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * Values of the [[Particular values of the Riemann zeta function#Derivatives|derivative of the Riemann zeta function]] and [[Dirichlet beta function#Derivative|Dirichlet beta function]].<ref name=":7" />{{rp|137}}<ref name=":1" /> * In connection to the [[Laplace transform|Laplace]] and [[Mellin transform]].<ref>{{Cite book |last=Williams |first=John |title=Laplace transforms |date=1973 |publisher=Allen & Unwin |isbn=978-0-04-512021-5 |series=Problem solvers |location=London}}</ref><ref>{{Cite web |title=DLMF: §2.5 Mellin Transform Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations |url=https://dlmf.nist.gov/2.5 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> * In the regularization/[[renormalization]] of the [[harmonic series (mathematics)|harmonic series]] as a finite value. *Expressions involving the [[exponential integral|exponential]] and [[Logarithmic integral function|logarithmic integral]].*<ref name=":8">{{Cite web |title=DLMF: §6.6 Power Series ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals |url=https://dlmf.nist.gov/6.6 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |last=Weisstein |first=Eric W. |title=Logarithmic Integral |url=https://mathworld.wolfram.com/LogarithmicIntegral.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * A definition of the [[trigonometric integral#Cosine integral|cosine integral]].*<ref name=":8" /> * In relation to [[Bessel function|Bessel functions]].<ref>{{Cite web |title=DLMF: §10.32 Integral Representations ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.32 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |title=DLMF: §10.22 Integrals ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.22 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |title=DLMF: §10.8 Power Series ‣ Bessel Functions and Hankel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.8 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |title=DLMF: §10.24 Functions of Imaginary Order ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.24 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> * Asymptotic expansions of modified [[Struve function|Struve functions]].<ref>{{Cite web |title=DLMF: §11.6 Asymptotic Expansions ‣ Struve and Modified Struve Functions ‣ Chapter 11 Struve and Related Functions |url=https://dlmf.nist.gov/11.6 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> * In relation to other [[special functions]].<ref>{{Cite web |title=DLMF: §13.2 Definitions and Basic Properties ‣ Kummer Functions ‣ Chapter 11 Confluent Hypergeometric Functions |url=https://dlmf.nist.gov/13.2 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref><ref>{{Cite web |title=DLMF: §9.12 Scorer Functions ‣ Related Functions ‣ Chapter 9 Airy and Related Functions |url=https://dlmf.nist.gov/9.12 |access-date=2024-11-01 |website=dlmf.nist.gov}}</ref> ===Number theory=== * An inequality for [[Euler's totient function]].<ref>{{Cite journal |last1=Rosser |first1=J. Barkley |last2=Schoenfeld |first2=Lowell |date=1962 |title=Approximate formulas for some functions of prime numbers |url=https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full |journal=Illinois Journal of Mathematics |volume=6 |issue=1 |pages=64–94 |doi=10.1215/ijm/1255631807 |issn=0019-2082}}</ref> * The growth rate of the [[divisor function]].<ref>{{Cite book |last1=Hardy |first1=Godfrey H. |title=An introduction to the theory of numbers |last2=Wright |first2=Edward M. |last3=Silverman |first3=Joseph H. |date=2008 |publisher=Oxford University Press |isbn=978-0-19-921986-5 |editor-last=Heath-Brown |editor-first=D. R. |edition=6th |series=Oxford mathematics |location=Oxford New York Auckland |page=469-471}}</ref> * A formulation of the [[Riemann hypothesis]].<ref name=":2" /><ref>{{Cite journal |last=Robin |first=Guy |date=1984 |title=Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann |url=http://zakuski.utsa.edu/~jagy/Robin_1984.pdf |journal=Journal de mathématiques pures et appliquées |volume=63 |pages=187–213}}</ref> * The third of [[Mertens' theorems]].*<ref name=":9" /> * The calculation of the [[Meissel–Mertens constant]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Mertens Constant |url=https://mathworld.wolfram.com/MertensConstant.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * Lower bounds to specific [[Prime gap#Lower bounds|prime gaps]].<ref>{{Cite journal |last=Pintz |first=János |date=1997-04-01 |title=Very Large Gaps between Consecutive Primes |url=https://www.sciencedirect.com/science/article/pii/S0022314X97920813 |journal=Journal of Number Theory |volume=63 |issue=2 |pages=286–301 |doi=10.1006/jnth.1997.2081 |issn=0022-314X}}</ref> * An [[approximation]] of the average number of [[Divisor|divisors]] of all numbers from 1 to a given ''n.''<ref name=":6" /> * The [[Lenstra–Pomerance–Wagstaff conjecture]] on the frequency of [[Mersenne prime|Mersenne primes]].<ref>{{Cite web |title=Heuristics: Deriving the Wagstaff Mersenne Conjecture |url=https://t5k.org/mersenne/heuristic.html |access-date=2024-11-01 |website=t5k.org}}</ref> * An estimation of the efficiency of the [[euclidean algorithm]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Porter's Constant |url=https://mathworld.wolfram.com/PortersConstant.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * Sums involving the [[Möbius function|Möbius]] and [[Von Mangoldt function|von Mangolt function]]. * Estimate of the divisor summatory function of the [[Dirichlet hyperbola method]].<ref>{{Cite book |last=Tenenbaum |first=Gérald |url=https://books.google.de/books?id=UEk-CgAAQBAJ&lpg=PR15&dq=dirichlet%20hyperbola%20method&hl=de&pg=PA360#v=onepage&q=dirichlet%20hyperbola%20method&f=false |title=Introduction to Analytic and Probabilistic Number Theory |date=2015-07-16 |publisher=American Mathematical Soc. |isbn=978-0-8218-9854-3 |language=en}}</ref> === In other fields === *In some formulations of [[Zipf's law]]. *The answer to the [[coupon collector's problem]].* * The mean of the [[Gumbel distribution]]. * An approximation of the [[Landau distribution]]. * The [[information entropy]] of the [[Weibull distribution|Weibull]] and [[Lévy distribution|Lévy]] distributions, and, implicitly, of the [[chi-squared distribution]] for one or two degrees of freedom. * An upper bound on [[Shannon entropy]] in [[quantum information science|quantum information theory]].{{r|CavesFuchs1996}} * In [[dimensional regularization]] of [[Feynman diagram]]s in [[quantum field theory]]. * In the BCS equation on the critical temperature in [[Bardeen–Cooper–Schrieffer|BCS theory]] of superconductivity.* * [[Fisher's geometric model|Fisher–Orr model]] for genetics of adaptation in evolutionary biology.{{r|ConnallonHodgins2021}} == Properties == ===Irrationality and transcendence=== The number {{math|''γ''}} has not been proved [[algebraic number|algebraic]] or [[transcendental number|transcendental]]. In fact, it is not even known whether {{math|''γ''}} is [[irrational number|irrational]]. The ubiquity of {{math|''γ''}} revealed by the large number of equations below and the fact that {{math|{{var|γ}}}} has been called the third most important mathematical constant after [[Pi|{{math|{{var|π}}}}]] and [[E (mathematical constant)|{{math|{{var|e}}}}]]<ref>{{Cite web |title=Eulers Constant |url=https://num.math.uni-goettingen.de/~skraemer/gamma.html |access-date=2024-10-19 |website=num.math.uni-goettingen.de}}</ref><ref name=":7">{{Cite book |last=Finch |first=Steven R. |url=https://books.google.com/books?id=Pl5I2ZSI6uAC |title=Mathematical Constants |date=2003-08-18 |publisher=Cambridge University Press |isbn=978-0-521-81805-6 |language=en}}</ref> makes the irrationality of {{math|''γ''}} a major open question in mathematics.<ref name=":3" /><ref>{{Cite web |last=Waldschmidt |first=Michel |date=2023 |title=Some of the most famous open problems in number theory |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/OpenPbsNT.pdf}}</ref>{{r|Sondow2003a}}<ref name=":6">{{Cite book |last1=Conway |first1=John H. |url=https://books.google.com/books?id=0--3rcO7dMYC |title=The Book of Numbers |last2=Guy |first2=Richard |date=1998-03-16 |publisher=Springer Science & Business Media |isbn=978-0-387-97993-9 |language=en}}</ref> {{unsolved|mathematics|Is Euler's constant irrational? If so, is it transcendental?}} However, some progress has been made. In 1959 Andrei Shidlovsky proved that at least one of Euler's constant {{math|''γ''}} and the [[Euler–Gompertz constant|Gompertz constant]] {{math|''δ''}} is irrational;{{r|Aptekarev2009}}<ref name=":2">{{Cite web |last=Waldschmidt |first=Michel |date=2023 |title=On Euler's Constant |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/EulerConstant.pdf |place=Sorbonne Université, Institut de Mathématiques de Jussieu, Paris}}</ref> [[Tanguy Rivoal]] proved in 2012 that at least one of them is transcendental.{{r|Rivoal2012}} [[Kurt Mahler]] showed in 1968 that the number <math display=inline>\frac \pi 2\frac{Y_0(2)}{J_0(2)}-\gamma</math> is transcendental, where <math>J_0</math> and <math>Y_0</math> are the usual [[Bessel function]]s.{{r|Mahler1968}}{{sfn|Lagarias|2013}} It is known that the [[Transcendental extension|transcendence degree]] of the field <math>\mathbb Q(e,\gamma,\delta)</math> is at least two.{{sfn|Lagarias|2013}} In 2010, [[M. Ram Murty]] and N. Saradha showed that at most one of the Euler-Lehmer constants, i. e. the numbers of the form <math display="block">\gamma(a,q) = \lim_{n\rightarrow\infty}\left( - \frac{\log{(a+nq})}{q} + \sum_{k=0}^n{\frac{1}{a+kq}}\right)</math> is algebraic, if {{math|''q'' ≥ 2}} and {{math|1 ≤ ''a'' < ''q''}}; this family includes the special case {{math|1=''γ''(2,4) = ''γ''/4}}.{{sfn|Lagarias|2013}}{{r|RamMurtySaradha2010}} Using the same approach, in 2013, M. Ram Murty and A. Zaytseva showed that the generalized Euler constants have the same property, {{sfn|Lagarias|2013}}{{r|MurtyZaytseva2013}} <ref>{{Cite journal |last1=Diamond |first1=H. G. |last2=Ford |first2=K. |title=Generalized Euler constants |journal=Mathematical Proceedings of the Cambridge Philosophical Society |date=2008 |volume=145 |issue=1 |pages=27–41 |publisher=[[Cambridge University Press]] |doi=10.1017/S0305004108001187 |arxiv=math/0703508|bibcode=2008MPCPS.145...27D }}</ref> where the generalized Euler constant are defined as <math display="block">\gamma(\Omega) = \lim_{x\rightarrow\infty} \left( \sum_{n=1}^x \frac{1_\Omega(n)}{n} - \log x \cdot \lim_{x\rightarrow\infty} \frac{ \sum_{n=1}^x 1_\Omega (n) }{x} \right),</math> where {{tmath|\Omega}} is a fixed list of prime numbers, <math>1_\Omega(n) =0</math> if at least one of the primes in {{tmath|\Omega}} is a prime factor of {{tmath|n}}, and <math>1_\Omega(n) =1</math> otherwise. In particular, {{tmath|1=\gamma(\empty)=\gamma}}. Using a [[continued fraction]] analysis, Papanikolaou showed in 1997 that if {{math|''γ''}} is [[rational number|rational]], its denominator must be greater than 10<sup>244663</sup>.{{r|HaiblePapanikolaou1998|Papanikolaou1997}} If {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} is a rational number, then its denominator must be greater than 10<sup>15000</sup>.{{sfn|Lagarias|2013}} Euler's constant is conjectured not to be an [[Period (algebraic geometry)|algebraic period]],{{sfn|Lagarias|2013}} but the values of its first 10<sup>9</sup> decimal digits seem to indicate that it could be a [[normal number]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant Digits |url=https://mathworld.wolfram.com/Euler-MascheroniConstantDigits.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}</ref> === Continued fraction === The simple [[continued fraction]] expansion of Euler's constant is given by:{{r|OEIS_A002852}} :<math>\gamma=0+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{4+\dots}}}}}}}</math> which has no ''apparent'' pattern. It is known to have at least 16,695,000,000 terms,{{r|OEIS_A002852}} and it has infinitely many terms [[if and only if]] {{mvar|γ}} is irrational. [[File:KhinchinBeispiele.svg|thumb|The Khinchin limits for <math>\pi</math> (red), <math>\gamma</math> (blue) and <math>\sqrt[3]{2}</math> (green).|350x350px]] Numerical evidence suggests that both Euler's constant {{math|{{var|γ}}}} as well as the constant {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} are among the numbers for which the [[geometric mean]] of their simple continued fraction terms converges to [[Khinchin's constant]]. Similarly, when <math>p_n/q_n</math> are the convergents of their respective continued fractions, the limit <math>\lim_{n\to\infty}q_n^{1/n}</math> appears to converge to [[Lévy's constant]] in both cases.<ref name=":4">{{Cite journal |last=Brent |first=Richard P. |date=1977 |title=Computation of the Regular Continued Fraction for Euler's Constant |url=https://www.jstor.org/stable/2006010 |journal=Mathematics of Computation |volume=31 |issue=139 |pages=771–777 |doi=10.2307/2006010 |jstor=2006010 |issn=0025-5718}}</ref> However neither of these limits has been proven.<ref name=":0">{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant Continued Fraction |url=https://mathworld.wolfram.com/Euler-MascheroniConstantContinuedFraction.html |access-date=2024-09-23 |website=mathworld.wolfram.com |language=en}}</ref> There also exists a generalized continued fraction for Euler's constant.<ref>{{Citation |last1=Pilehrood |first1=Khodabakhsh Hessami |title=On a continued fraction expansion for Euler's constant |date=2013-12-29 |last2=Pilehrood |first2=Tatiana Hessami|arxiv=1010.1420 }}</ref> A good simple [[approximation]] of {{math|{{var|γ}}}} is given by the [[Multiplicative inverse|reciprocal]] of the [[square root of 3]] or about 0.57735:<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant Approximations |url=https://mathworld.wolfram.com/Euler-MascheroniConstantApproximations.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}</ref> :<math>\frac1\sqrt {3}=0+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{2+\dots}}}}}}}</math> with the difference being about 1 in 7,429. == Formulas and identities == === Relation to gamma function === {{mvar|γ}} is related to the [[digamma function]] {{math|Ψ}}, and hence the [[derivative]] of the [[gamma function]] {{math|Γ}}, when both functions are evaluated at 1. Thus: <math display="block">-\gamma = \Gamma'(1) = \Psi(1). </math> This is equal to the limits: <math display="block">\begin{align}-\gamma &= \lim_{z\to 0}\left(\Gamma(z) - \frac1{z}\right) \\&= \lim_{z\to 0}\left(\Psi(z) + \frac1{z}\right).\end{align}</math> Further limit results are:{{r|Krämer2005}} <math display="block">\begin{align} \lim_{z\to 0}\frac1{z}\left(\frac1{\Gamma(1+z)} - \frac1{\Gamma(1-z)}\right) &= 2\gamma \\ \lim_{z\to 0}\frac1{z}\left(\frac1{\Psi(1-z)} - \frac1{\Psi(1+z)}\right) &= \frac{\pi^2}{3\gamma^2}. \end{align}</math> A limit related to the [[beta function]] (expressed in terms of [[gamma function]]s) is <math display="block">\begin{align} \gamma &= \lim_{n\to\infty}\left(\frac{ \Gamma\left(\frac1{n}\right) \Gamma(n+1)\, n^{1+\frac1{n}}}{\Gamma\left(2+n+\frac1{n}\right)} - \frac{n^2}{n+1}\right) \\ &= \lim\limits_{m\to\infty}\sum_{k=1}^m{m \choose k}\frac{(-1)^k}{k}\log\big(\Gamma(k+1)\big). \end{align}</math> === Relation to the zeta function === {{mvar|γ}} can also be expressed as an [[series (mathematics)|infinite sum]] whose terms involve the [[Riemann zeta function]] evaluated at positive integers: <math display="block">\begin{align}\gamma &= \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{m} \\ &= \log\frac4{\pi} + \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{2^{m-1}m}.\end{align} </math> The constant <math>\gamma</math> can also be expressed in terms of the sum of the reciprocals of [[Riemann hypothesis|non-trivial zeros]] <math>\rho</math> of the zeta function:<ref name="Marek6infinity2019">{{Cite arXiv | last = Wolf | first = Marek | title = 6+infinity new expressions for the Euler-Mascheroni constant | year = 2019 | eprint = 1904.09855 | class = math.NT | quote = "The above sum is real and convergent when zeros <math>\rho</math> and complex conjugate <math>\bar{\rho}</math> are paired together and summed according to increasing absolute values of the imaginary parts of {{nowrap|<math>\rho</math>.}}"}} See formula 11 on page 3. Note the typographical error in the numerator of Wolf's sum over zeros, which should be 2 rather than 1.</ref> :<math>\gamma = \log 4\pi + \sum_{\rho} \frac{2}{\rho} - 2</math> Other series related to the zeta function include: <math display="block">\begin{align} \gamma &= \tfrac3{2}- \log 2 - \sum_{m=2}^\infty (-1)^m\,\frac{m-1}{m}\big(\zeta(m)-1\big) \\ &= \lim_{n\to\infty}\left(\frac{2n-1}{2n} - \log n + \sum_{k=2}^n \left(\frac1{k} - \frac{\zeta(1-k)}{n^k}\right)\right) \\ &= \lim_{n\to\infty}\left(\frac{2^n}{e^{2^n}} \sum_{m=0}^\infty \frac{2^{mn}}{(m+1)!} \sum_{t=0}^m \frac1{t+1} - n \log 2+ O \left (\frac1{2^{n}\, e^{2^n}}\right)\right).\end{align}</math> The error term in the last equation is a rapidly decreasing function of {{mvar|n}}. As a result, the formula is well-suited for efficient computation of the constant to high precision. Other interesting limits equaling Euler's constant are the antisymmetric limit:{{r|Sondow1998}} <math display="block">\begin{align} \gamma &= \lim_{s\to 1^+}\sum_{n=1}^\infty \left(\frac1{n^s}-\frac1{s^n}\right) \\&= \lim_{s\to 1}\left(\zeta(s) - \frac{1}{s-1}\right) \\&= \lim_{s\to 0}\frac{\zeta(1+s)+\zeta(1-s)}{2} \end{align}</math> and the following formula, established in 1898 by [[Charles Jean de la Vallée-Poussin|de la Vallée-Poussin]]: <math display="block">\gamma = \lim_{n\to\infty}\frac1{n}\, \sum_{k=1}^n \left(\left\lceil \frac{n}{k} \right\rceil - \frac{n}{k}\right)</math> where {{math|{{ceil| }}}} are [[ceiling function|ceiling]] brackets. This formula indicates that when taking any positive integer {{mvar|n}} and dividing it by each positive integer {{mvar|k}} less than {{mvar|n}}, the average fraction by which the quotient {{math|{{var|n}}/{{var|k}}}} falls short of the next integer tends to {{mvar|γ}} (rather than 0.5) as {{mvar|n}} tends to infinity. Closely related to this is the [[rational zeta series]] expression. By taking separately the first few terms of the series above, one obtains an estimate for the classical series limit: <math display="block">\gamma =\lim_{n\to\infty}\left( \sum_{k=1}^n \frac1{k} - \log n -\sum_{m=2}^\infty \frac{\zeta(m,n+1)}{m}\right),</math> where {{math|{{var|ζ}}({{var|s}}, {{var|k}})}} is the [[Hurwitz zeta function]]. The sum in this equation involves the [[harmonic number]]s, {{math|{{var|H}}{{sub|{{var|n}}}}}}. Expanding some of the terms in the Hurwitz zeta function gives: <math display="block">H_n = \log(n) + \gamma + \frac1{2n} - \frac1{12n^2} + \frac1{120n^4} - \varepsilon,</math> where {{math|0 < {{var|ε}} < {{sfrac|1|252{{var|n}}{{sup|6}}}}.}} {{mvar|γ}} can also be expressed as follows where {{mvar|A}} is the [[Glaisher–Kinkelin constant]]: <math display="block">\gamma =12\,\log(A)-\log(2\pi)+\frac{6}{\pi^2}\,\zeta'(2)</math> {{mvar|γ}} can also be expressed as follows, which can be proven by expressing the [[Riemann zeta function|zeta function]] as a [[Laurent series]]: <math display="block">\gamma=\lim_{n\to\infty}\left(-n+\zeta\left(\frac{n+1}{n}\right)\right)</math> === Relation to triangular numbers === Numerous formulations have been derived that express <math>\gamma</math> in terms of sums and logarithms of [[triangular numbers]].<ref name="Boya2008AnotherRelation">{{Cite journal | last = Boya | first = L.J. | title = Another relation between π, e, γ and ζ(n) | journal = Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | volume = 102 | pages = 199–202 | year = 2008 | issue = 2 | url = https://doi.org/10.1007/BF03191819 | doi = 10.1007/BF03191819 | bibcode = 2008RvMad.102..199B | quote = "γ/2 in (10) reflects the residual (finite part) of ζ(1)/2, of course." }} See formulas 1 and 10.</ref><ref name="Jonathan2005DoubleIntegrals">{{Cite journal | last = Sondow | first = Jonathan | title = Double Integrals for Euler's Constant and <math>\textstyle \frac{4}{\pi}</math> and an Analog of Hadjicostas's Formula | journal = The American Mathematical Monthly | volume = 112 | issue = 1 | year = 2005 | pages = 61–65 | url = https://doi.org/10.2307/30037385 | doi = 10.2307/30037385 | jstor = 30037385 | access-date = 2024-04-27 }}</ref><ref>{{Cite journal | last = Chen | first = Chao-Ping | title = Ramanujan's formula for the harmonic number | journal = Applied Mathematics and Computation | volume = 317 | year = 2018 | pages = 121–128 | issn = 0096-3003 | doi = 10.1016/j.amc.2017.08.053 | url = https://www.sciencedirect.com/science/article/pii/S0096300317306112 | access-date = 2024-04-27 }}</ref><ref>{{cite journal | last = Lodge | first = A. | title = An approximate expression for the value of 1 + 1/2 + 1/3 + ... + 1/r | journal = Messenger of Mathematics | volume = 30 | year = 1904 | pages = 103–107 | url = https://books.google.com/books?id=K4daAAAAYAAJ&dq=%22An%20approximate%20expression%20for%20the%20value%20of%201%2B%22&pg=PA103 }}</ref> One of the earliest of these is a formula<ref>{{Cite arXiv | last = Villarino | first = Mark B. | title = Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number | year = 2007 | eprint = 0707.3950 | class = math.CA | quote = It would also be interesting to develop an expansion for n! into powers of m, a new ''Stirling'' expansion, as it were. }} See formula 1.8 on page 3.</ref><ref>{{Cite journal | last = Mortici | first = Cristinel | year = 2010 | title = On the Stirling expansion into negative powers of a triangular number | journal = Math. Commun. | volume = 15 | pages = 359–364 | url = https://www.researchgate.net/publication/228562533 | doi = }}</ref> for the {{nowrap|<math>n</math>th}} [[harmonic number]] attributed to [[Srinivasa Ramanujan]] where <math>\gamma</math> is related to <math>\textstyle \ln 2T_{k}</math> in a series that considers the powers of <math>\textstyle \frac{1}{T_{k}}</math> (an earlier, less-generalizable proof<ref>{{Cite journal |last=Cesàro |first=E. |title=Sur la série harmonique |journal=Nouvelles annales de mathématiques: Journal des candidats aux écoles polytechnique et normale |volume=4 |pages=295–296 |year=1885 |url=http://eudml.org/doc/100057 |language=fr |publisher=Carilian-Goeury et Vor Dalmont}}</ref><ref>{{cite book | last = Bromwich | first = Thomas John I'Anson | title = An Introduction to the Theory of Infinite Series | publisher = American Mathematical Society | year = 2005 | orig-date = 1908 | edition = 3rd | location = United Kingdom | url = https://www.dbraulibrary.org.in/RareBooks/An%20introduction%20to%20the%20theory%20of%20infinite%20series.pdf | page = 460 }} See exercise 18.</ref> by [[Ernesto Cesàro]] gives the first two terms of the series, with an error term): :<math>\begin{align} \gamma &= H_u - \frac{1}{2} \ln 2T_u - \sum_{k=1}^{v}\frac{R(k)}{T_{u}^{k}}-\Theta_{v}\,\frac{R(v+1)}{T_{u}^{v+1}} \end{align}</math> From [[Stirling's approximation]]<ref name="Boya2008AnotherRelation"/><ref>{{cite book | last1 = Whittaker | first1 = E. | last2 = Watson | first2 = G. | title = A Course of Modern Analysis | edition = 5th | orig-date = 1902 | year = 2021 | page = 271, 275 | isbn = 9781316518939 | doi = 10.1017/9781009004091 }} See Examples 12.21 and 12.50 for exercises on the derivation of the integral form <math>\textstyle \int_{-1}^{0} \ln\Gamma(z+1)\,dz</math> of the series <math>\textstyle \sum_{k=1}^{n} \frac{\zeta(k)}{110_{k}} = \ln(\sqrt{2\pi})</math>.</ref> follows a similar series: :<math>\gamma = \ln 2\pi - \sum_{k=2}^{\infty} \frac{\zeta(k)}{T_{k}}</math> The series of inverse triangular numbers also features in the study of the [[Basel problem]]{{sfn|Lagarias|2013|p=13}}<ref>{{cite journal |last=Nelsen |first=R. B. |title=Proof without Words: Sum of Reciprocals of Triangular Numbers |journal=Mathematics Magazine |volume=64 |issue=3 |year=1991 |pages=167|doi=10.1080/0025570X.1991.11977600 }}</ref> posed by [[Pietro Mengoli]]. Mengoli proved that <math>\textstyle \sum_{k = 1}^\infty \frac{1}{2T_k} = 1</math>, a result [[Jacob Bernoulli]] later used to estimate the [[Basel_problem#The_Riemann_zeta_function|value]] of <math>\zeta(2)</math>, placing it between <math>1</math> and <math>\textstyle \sum_{k = 1}^\infty \frac{2}{2T_k} = \sum_{k = 1}^\infty \frac{1}{T_{k}} = 2</math>. This identity appears in a formula used by [[Bernhard Riemann]] to compute [[Eulers_constant#Relation_to_the_zeta_function|roots of the zeta function]],<ref>{{Cite book | last = Edwards | first = H. M. | title = Riemann's Zeta Function | publisher = Academic Press | year = 1974 | series = Pure and Applied Mathematics, Vol. 58 | pages = 67, 159}}</ref> where <math>\gamma</math> is expressed in terms of the sum of roots <math>\rho</math> plus the difference between Boya's expansion and the series of exact [[Unit fraction|unit fractions]] <math>\textstyle \sum_{k = 1}^{\infty} \frac{1}{T_{k}}</math>: :<math>\gamma - \ln 2 = \ln 2\pi + \sum_{\rho} \frac{2}{\rho} - \sum_{k = 1}^{\infty} \frac{1}{T_k}</math> === Integrals === {{mvar|γ}} equals the value of a number of definite [[integral]]s: <math display="block">\begin{align} \gamma &= - \int_0^\infty e^{-x} \log x \,dx \\ &= -\int_0^1\log\left(\log\frac 1 x \right) dx \\ &= \int_0^\infty \left(\frac1{e^x-1}-\frac1{x\cdot e^x} \right)dx \\ &= \int_0^1\frac{1-e^{-x}}{x} \, dx -\int_1^\infty \frac{e^{-x}}{x}\, dx\\ &= \int_0^1\left(\frac1{\log x} + \frac1{1-x}\right)dx\\ &= \int_0^\infty \left(\frac1{1+x^k}-e^{-x}\right)\frac{dx}{x},\quad k>0\\ &= 2\int_0^\infty \frac{e^{-x^2}-e^{-x}}{x} \, dx ,\\ &= \log\frac{\pi}{4}-\int_0^\infty \frac{\log x}{\cosh^2x} \, dx ,\\ &= \int_0^1 H_x \, dx, \\ &= \frac{1}{2}+\int_{0}^{\infty}\log\left(1+\frac{\log\left(1+\frac{1}{t}\right)^{2}}{4\pi^{2}}\right)dt \\ &= 1-\int_0^1 \{1/x\} dx \end{align} </math> where {{math|{{var|H}}{{sub|{{var|x}}}}}} is the [[Harmonic number#Harmonic numbers for real and complex values|fractional harmonic number]], and <math>\{1/x\}</math> is the [[fractional part]] of <math>1/x</math>. The third formula in the integral list can be proved in the following way: <math display="block">\begin{align} &\int_0^{\infty} \left(\frac{1}{e^x - 1} - \frac{1}{x e^x} \right) dx = \int_0^{\infty} \frac{e^{-x} + x - 1}{x[e^x -1]} dx = \int_0^{\infty} \frac{1}{x[e^x - 1]} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}x^{m+1}}{(m+1)!} dx \\[2pt] &= \int_0^{\infty} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}x^m}{(m+1)![e^x -1]} dx = \sum_{m = 1}^{\infty} \int_0^{\infty} \frac{(-1)^{m+1}x^m}{(m+1)![e^x -1]} dx = \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{(m+1)!} \int_0^{\infty} \frac{x^m}{e^x - 1} dx \\[2pt] &= \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{(m+1)!} m!\zeta(m+1) = \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\zeta(m+1) = \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1} \sum_{n = 1}^{\infty}\frac{1}{n^{m+1}} = \sum_{m = 1}^{\infty} \sum_{n = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\frac{1}{n^{m+1}} \\[2pt] &= \sum_{n = 1}^{\infty} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\frac{1}{n^{m+1}} = \sum_{n = 1}^{\infty} \left[\frac{1}{n} - \log\left(1+\frac{1}{n}\right)\right] = \gamma \end{align}</math> The integral on the second line of the equation is the definition of the [[Riemann zeta function]], which is {{math|{{var|m}}!{{var|ζ}}({{var|m}} + 1)}}. Definite integrals in which {{mvar|γ}} appears include:<ref name=":3">{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant |url=https://mathworld.wolfram.com/Euler-MascheroniConstant.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}</ref><ref name=":1">{{Cite journal |last=Blagouchine |first=Iaroslav V. |date=2014-10-01 |title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results |url=https://link.springer.com/article/10.1007/s11139-013-9528-5 |journal=The Ramanujan Journal |language=en |volume=35 |issue=1 |pages=21–110 |doi=10.1007/s11139-013-9528-5 |issn=1572-9303}}</ref> <math display="block">\begin{align} \int_0^\infty e^{-x^2} \log x \,dx &= -\frac{(\gamma+2\log 2)\sqrt{\pi}}{4} \\ \int_0^\infty e^{-x} \log^2 x \,dx &= \gamma^2 + \frac{\pi^2}{6} \\ \int_0^\infty \frac{e^{-x}\log x}{e^x +1} \,dx &= \frac12 \log^2 2 - \gamma \end{align}</math> We also have [[Eugène Charles Catalan|Catalan]]'s 1875 integral{{r|SondowZudilin2006}} <math display="block">\gamma = \int_0^1 \left(\frac1{1+x}\sum_{n=1}^\infty x^{2^n-1}\right)\,dx.</math> One can express {{mvar|γ}} using a special case of [[Hadjicostas's formula]] as a [[Multiple integral#Double integral|double integral]]{{r|Sondow2003a|Sondow2005}} with equivalent series: <math display="block">\begin{align} \gamma &= \int_0^1 \int_0^1 \frac{x-1}{(1-xy)\log xy}\,dx\,dy \\ &= \sum_{n=1}^\infty \left(\frac 1 n -\log\frac{n+1} n \right). \end{align}</math> An interesting comparison by Sondow{{r|Sondow2005}} is the double integral and alternating series <math display="block">\begin{align} \log\frac 4 \pi &= \int_0^1 \int_0^1 \frac{x-1}{(1+xy)\log xy} \,dx\,dy \\ &= \sum_{n=1}^\infty \left((-1)^{n-1}\left(\frac 1 n -\log\frac{n+1} n \right)\right). \end{align}</math> It shows that {{math|log {{sfrac|4|π}}}} may be thought of as an "alternating Euler constant". The two constants are also related by the pair of series{{r|Sondow2005a}} <math display="block">\begin{align} \gamma &= \sum_{n=1}^\infty \frac{N_1(n) + N_0(n)}{2n(2n+1)} \\ \log\frac4{\pi} &= \sum_{n=1}^\infty \frac{N_1(n) - N_0(n)}{2n(2n+1)} , \end{align}</math> where {{math|{{var|N}}{{sub|1}}({{var|n}})}} and {{math|{{var|N}}{{sub|0}}({{var|n}})}} are the number of 1s and 0s, respectively, in the [[Binary number|base 2]] expansion of {{mvar|n}}. === Series expansions === In general, <math display="block"> \gamma = \lim_{n \to \infty}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3} + \ldots + \frac{1}{n} - \log(n+\alpha) \right) \equiv \lim_{n \to \infty} \gamma_n(\alpha) </math> for any {{math|{{var|α}} > −{{var|n}}}}. However, the rate of convergence of this expansion depends significantly on {{mvar|α}}. In particular, {{math|{{var|γ}}{{sub|{{var|n}}}}(1/2)}} exhibits much more rapid convergence than the conventional expansion {{math|{{var|γ}}{{sub|{{var|n}}}}(0)}}.{{r|DeTemple1993}}{{sfn|Havil|2003|pp=75–8}} This is because <math display="block"> \frac{1}{2(n+1)} < \gamma_n(0) - \gamma < \frac{1}{2n}, </math> while <math display="block"> \frac{1}{24(n+1)^2} < \gamma_n(1/2) - \gamma < \frac{1}{24n^2}. </math> Even so, there exist other series expansions which converge more rapidly than this; some of these are discussed below. Euler showed that the following [[infinite series]] approaches {{mvar|γ}}: <math display="block">\gamma = \sum_{k=1}^\infty \left(\frac 1 k - \log\left(1+\frac 1 k \right)\right).</math> The series for {{mvar|γ}} is equivalent to a series [[Niels Nielsen (mathematician)|Nielsen]] found in 1897:{{r|Krämer2005}}{{sfn|Blagouchine|2016}} <math display="block">\gamma = 1 - \sum_{k=2}^\infty (-1)^k\frac{\left\lfloor\log_2 k\right\rfloor}{k+1}.</math> In 1910, [[Giovanni Vacca (mathematician)|Vacca]] found the closely related series{{r|Vacca1910|Glaisher1910|Hardy1912|Vacca1926|Kluyver1927|Krämer2005|Blagouchine2016}} <math display="block">\begin{align} \gamma & = \sum_{k=1}^\infty (-1)^k\frac{\left\lfloor\log_2 k\right\rfloor} k \\[5pt] & = \tfrac12-\tfrac13 + 2\left(\tfrac14 - \tfrac15 + \tfrac16 - \tfrac17\right) + 3\left(\tfrac18 - \tfrac19 + \tfrac1{10} - \tfrac1{11} + \cdots - \tfrac1{15}\right) + \cdots, \end{align}</math> where {{math|log{{sub|2}}}} is the [[binary logarithm|logarithm to base 2]] and {{math|{{floor| }}}} is the [[Floor and ceiling functions|floor function]]. This can be generalized to:<ref>{{Citation |last1=Pilehrood |first1=Khodabakhsh Hessami |title=Vacca-type series for values of the generalized-Euler-constant function and its derivative |date=2008-08-04 |last2=Pilehrood |first2=Tatiana Hessami|arxiv=0808.0410 }}</ref> <math display="block">\gamma= \sum_{k=1}^\infty \frac{\left\lfloor\log_B k\right\rfloor}{k} \varepsilon(k)</math>where:<math display="block">\varepsilon(k)= \begin{cases} B-1, &\text{if } B\mid n \\ -1, &\text{if }B\nmid n \end{cases}</math> In 1926 Vacca found a second series: <math display="block">\begin{align} \gamma + \zeta(2) & = \sum_{k=2}^\infty \left( \frac1{\left\lfloor\sqrt{k}\right\rfloor^2} - \frac1{k}\right) \\[5pt] & = \sum_{k=2}^\infty \frac{k - \left\lfloor\sqrt{k}\right\rfloor^2}{k \left\lfloor \sqrt{k} \right\rfloor^2} \\[5pt] &= \frac12 + \frac23 + \frac1{2^2}\sum_{k=1}^{2\cdot 2} \frac{k}{k+2^2} + \frac1{3^2}\sum_{k=1}^{3\cdot 2} \frac{k}{k+3^2} + \cdots \end{align}</math> From the [[Carl Johan Malmsten|Malmsten]]–[[Ernst Kummer|Kummer]] expansion for the logarithm of the gamma function<ref name=":1" /> we get: <math display="block">\gamma = \log\pi - 4\log\left(\Gamma(\tfrac34)\right) + \frac 4 \pi \sum_{k=1}^\infty (-1)^{k+1}\frac{\log(2k+1)}{2k+1}.</math> Ramanujan, in his [[Ramanujan's lost notebook|lost notebook]] gave a series that approaches {{mvar|γ}}{{r|Berndt2008}}: <math display="block">\gamma = \log 2 - \sum_{n=1}^{\infty} \sum_{k=\frac{3^{n-1}+1}{2}}^{\frac{3^{n}-1}{2}} \frac{2n}{(3k)^3-3k}</math> An important expansion for Euler's constant is due to [[Gregorio Fontana|Fontana]] and [[Lorenzo Mascheroni|Mascheroni]] <math display="block">\gamma = \sum_{n=1}^\infty \frac{|G_n|}{n} = \frac12 + \frac1{24} + \frac1{72} + \frac{19}{2880} + \frac3{800} + \cdots,</math> where {{math|{{var|G}}{{sub|{{var|n}}}}}} are [[Gregory coefficients]].{{r|Krämer2005|Blagouchine2016|Blagouchine2018}} This series is the special case {{math|1={{var|k}} = 1}} of the expansions <math display="block">\begin{align} \gamma &= H_{k-1} - \log k + \sum_{n=1}^{\infty}\frac{(n-1)!|G_n|}{k(k+1) \cdots (k+n-1)} && \\ &= H_{k-1} - \log k + \frac1{2k} + \frac1{12k(k+1)} + \frac1{12k(k+1)(k+2)} + \frac{19}{120k(k+1)(k+2)(k+3)} + \cdots && \end{align}</math> convergent for {{math|1={{var|k}} = 1, 2, ...}} A similar series with the Cauchy numbers of the second kind {{math|{{var|C}}{{sub|{{var|n}}}}}} is{{r|Blagouchine2016|Alabdulmohsin2018_1478}} <math display="block">\gamma = 1 - \sum_{n=1}^\infty \frac{C_{n}}{n \, (n+1)!} =1- \frac{1}{4} -\frac{5}{72} - \frac{1}{32} - \frac{251}{14400} - \frac{19}{1728} - \ldots</math> Blagouchine (2018) found a generalisation of the Fontana–Mascheroni series <math display="block">\gamma=\sum_{n=1}^\infty\frac{(-1)^{n+1}}{2n}\Big\{\psi_{n}(a)+ \psi_{n}\Big(-\frac{a}{1+a}\Big)\Big\}, \quad a>-1</math> where {{math|{{var|ψ}}{{sub|{{var|n}}}}({{var|a}})}} are the [[Bernoulli polynomials of the second kind]], which are defined by the generating function <math display="block"> \frac{z(1+z)^s}{\log(1+z)}= \sum_{n=0}^\infty z^n \psi_n(s) ,\qquad |z|<1. </math> For any rational {{mvar|a}} this series contains rational terms only. For example, at {{math|1={{var|a}} = 1}}, it becomes{{r|OEIS_A302120|OEISA302121}} <math display="block">\gamma=\frac{3}{4} - \frac{11}{96} - \frac{1}{72} - \frac{311}{46080} - \frac{5}{1152} - \frac{7291}{2322432} - \frac{243}{100352} - \ldots</math> Other series with the same polynomials include these examples: <math display="block">\gamma= -\log(a+1) - \sum_{n=1}^\infty\frac{(-1)^n \psi_{n}(a)}{n},\qquad \Re(a)>-1 </math> and <math display="block">\gamma= -\frac{2}{1+2a} \left\{\log\Gamma(a+1) -\frac{1}{2}\log(2\pi) + \frac{1}{2} + \sum_{n=1}^\infty\frac{(-1)^n \psi_{n+1}(a)}{n}\right\},\qquad \Re(a)>-1 </math> where {{math|Γ({{var|a}})}} is the [[gamma function]].{{r|Blagouchine2018}} A series related to the Akiyama–Tanigawa algorithm is <math display="block">\gamma= \log(2\pi) - 2 - 2 \sum_{n=1}^\infty\frac{(-1)^n G_{n}(2)}{n}= \log(2\pi) - 2 + \frac{2}{3} + \frac{1}{24}+ \frac{7}{540} + \frac{17}{2880}+ \frac{41}{12600} + \ldots </math> where {{math|{{var|G}}{{sub|{{var|n}}}}(2)}} are the [[Gregory coefficients]] of the second order.{{r|Blagouchine2018}} As a series of [[prime number]]s: <math display="block">\gamma = \lim_{n\to\infty}\left(\log n - \sum_{p\le n}\frac{\log p}{p-1}\right).</math> === Asymptotic expansions === {{mvar|γ}} equals the following asymptotic formulas (where {{math|{{var|H}}{{sub|{{var|n}}}}}} is the {{mvar|n}}th [[harmonic number]]): *<math display="inline">\gamma \sim H_n - \log n - \frac1{2n} + \frac1{12n^2} - \frac1{120n^4} + \cdots</math> (''Euler'') *<math display="inline">\gamma \sim H_n - \log\left({n + \frac1{2} + \frac1{24n} - \frac1{48n^2} + \cdots}\right)</math> (''Negoi'') *<math display="inline">\gamma \sim H_n - \frac{\log n + \log(n+1)}{2} - \frac1{6n(n+1)} + \frac1{30n^2(n+1)^2} - \cdots</math> (''[[Ernesto Cesàro|Cesàro]]'') The third formula is also called the Ramanujan expansion. Alabdulmohsin derived closed-form expressions for the sums of errors of these approximations.{{r|Alabdulmohsin2018_1478}} He showed that (Theorem A.1): <math display="block">\begin{align} \sum_{n=1}^\infty \Big(\log n +\gamma - H_n + \frac{1}{2n}\Big) &= \frac{\log (2\pi)-1-\gamma}{2} \\ \sum_{n=1}^\infty \Big(\log \sqrt{n(n+1)} +\gamma - H_n \Big) &= \frac{\log (2\pi)-1}{2}-\gamma \\ \sum_{n=1}^\infty (-1)^n\Big(\log n +\gamma - H_n\Big) &= \frac{\log \pi-\gamma}{2} \end{align}</math> === Exponential === The constant {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} is important in number theory. Its numerical value is:{{r|OEIS_A073004}} {{block indent|{{gaps|1.78107|24179|90197|98523|65041|03107|17954|91696|45214|30343|...}}.}} {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} equals the following [[limit of a sequence|limit]], where {{math|{{var|p}}{{sub|{{var|n}}}}}} is the {{mvar|n}}th [[prime number]]: <math display="block">e^\gamma = \lim_{n\to\infty}\frac1{\log p_n} \prod_{i=1}^n \frac{p_i}{p_i-1}.</math> This restates the third of [[Mertens' theorems]].{{r|excursions}} We further have the following product involving the three constants {{math|{{var|e}}}}, {{math|{{var|π}}}} and {{math|{{var|γ}}}}:<ref name=":9">{{Cite web |last=Weisstein |first=Eric W. |title=Mertens Theorem |url=https://mathworld.wolfram.com/MertensTheorem.html |access-date=2024-10-08 |website=mathworld.wolfram.com |language=en}}</ref> <math display="block">\frac{\pi^2}{6e^\gamma}=\lim_{n\to\infty}\frac1{\log p_n} \prod_{i=1}^n \frac{p_i}{p_i+1}.</math> Other [[infinite product]]s relating to {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} include: <math display="block">\begin{align} \frac{e^{1+\frac{\gamma}{2}}}{\sqrt{2\pi}} &= \prod_{n=1}^\infty e^{-1+\frac1{2n}}\left(1+\frac1{n}\right)^n \\ \frac{e^{3+2\gamma}}{2\pi} &= \prod_{n=1}^\infty e^{-2+\frac2{n}}\left(1+\frac2{n}\right)^n. \end{align}</math> These products result from the [[Barnes G-function|Barnes {{mvar|G}}-function]]. In addition, <math display="block">e^{\gamma} = \sqrt{\frac2{1}} \cdot \sqrt[3]{\frac{2^2}{1\cdot 3}} \cdot \sqrt[4]{\frac{2^3\cdot 4}{1\cdot 3^3}} \cdot \sqrt[5]{\frac{2^4\cdot 4^4}{1\cdot 3^6\cdot 5}} \cdots</math> where the {{mvar|n}}th factor is the {{math|({{var|n}} + 1)}}th root of <math display="block">\prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}}.</math> This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow using [[hypergeometric function]]s.{{r|Sondow2003}} It also holds that{{r|ChoiSrivastava2010}} <math display="block">\frac{e^\frac{\pi}{2}+e^{-\frac{\pi}{2}}}{\pi e^\gamma}=\prod_{n=1}^\infty\left(e^{-\frac{1}{n}}\left(1+\frac{1}{n}+\frac{1}{2n^2}\right)\right).</math> ==Published digits== {| class="wikitable" style="margin: 1em auto 1em auto" |+ Published decimal expansions of {{mvar|γ}} ! Date || Decimal digits || Author || Sources |- | 1734 || style="text-align:right;"| 5 || [[Leonhard Euler]] ||{{sfn|Lagarias|2013}} |- | 1735 || style="text-align:right;"| 15 || Leonhard Euler ||{{sfn|Lagarias|2013}} |- | 1781 || style="text-align:right;"| 16 || Leonhard Euler ||{{sfn|Lagarias|2013}} |- | 1790 || style="text-align:right;"| 32 || [[Lorenzo Mascheroni]], with 20–22 and 31–32 wrong ||{{sfn|Lagarias|2013}} |- | 1809 || style="text-align:right;"| 22 || [[Johann Georg von Soldner|Johann G. von Soldner]] ||{{sfn|Lagarias|2013}} |- | 1811 || style="text-align:right;"| 22 || [[Carl Friedrich Gauss]] ||{{sfn|Lagarias|2013}} |- | 1812 || style="text-align:right;"| 40 || [[Friedrich Bernhard Gottfried Nicolai]] ||{{sfn|Lagarias|2013}} |- | 1861 || style="text-align:right;" | 41 || Ludwig Oettinger ||<ref>{{Cite journal |last=Oettinger |first=Ludwig |date=1862-01-01 |title=Ueber die richtige Werthbestimmung der Constante des Integrallogarithmus. |url=https://www.degruyter.com/document/doi/10.1515/crll.1862.60.375/html? |journal=Journal für die reine und angewandte Mathematik |language=de |volume=60 |issue= |pages=375–376 |doi=10.1515/crll.1862.60.375 |issn=1435-5345}}</ref> |- | 1867 || style="text-align:right;" | 49 || [[William Shanks]]||<ref>{{Cite journal |date=1867-12-31 |title=I. On the calculation of the numerical value of Euler's constant, which Professor Price, of Oxford, calls E |url=https://royalsocietypublishing.org/doi/10.1098/rspl.1866.0100 |journal=Proceedings of the Royal Society of London |language=en |volume=15 |pages=429–432 |doi=10.1098/rspl.1866.0100 |issn=0370-1662}}</ref> |- | 1871 || style="text-align:right;" | 100 || [[James Whitbread Lee Glaisher|James W.L. Glaisher]]||{{sfn|Lagarias|2013}} |- | 1877 || style="text-align:right;" | 263 || [[John Couch Adams|J. C. Adams]]||{{sfn|Lagarias|2013}} |- | 1952 || style="text-align:right;" | 328 || [[John Wrench|John William Wrench Jr.]]||{{sfn|Lagarias|2013}} |- | 1961 || style="text-align:right;" | {{val|1050|fmt=gaps}}|| Helmut Fischer and [[Karl Longin Zeller|Karl Zeller]]|| <ref>{{Cite web |last1=Fischer |first1=Helmut |last2=Zeller |first2=Karl |date=1961 |title=Bernoullische Zahlen und Eulersche Konstante |url=https://zbmath.org/?q=Bernoullische+Zahlen+und+Eulersche+Konstante |access-date=2024-10-27 |website=zbmath.org |language=de}}</ref> |- | 1962 || style="text-align:right;"| {{val|1271|fmt=gaps}} || [[Donald Knuth]] ||{{r|Knuth1962}} |- | 1963 || style="text-align:right;" | {{val|3566|fmt=gaps}} || Dura W. Sweeney ||<ref>{{Cite journal |last=Sweeney |first=Dura W. |date=1963 |title=On the computation of Euler's constant |journal=Mathematics of Computation |language=en |volume=17 |issue=82 |pages=170–178 |doi=10.1090/S0025-5718-1963-0160308-X |s2cid=120162114 |issn=0025-5718}}</ref> |- | 1973 || style="text-align:right;"| {{val|4879|fmt=gaps}} || William A. Beyer and [[Michael S. Waterman]] ||<ref>{{Cite journal |last1=Beyer |first1=W. A. |last2=Waterman |first2=M. S. |date=1974 |title=Error Analysis of a Computation of Euler's Constant |url=https://www.jstor.org/stable/2005935 |journal=Mathematics of Computation |volume=28 |issue=126 |pages=599–604 |doi=10.2307/2005935 |jstor=2005935 |issn=0025-5718}}</ref> |- | 1977 || style="text-align:right;"| {{val|20700}} || [[Richard Brent (scientist)|Richard P. Brent]] ||<ref name=":4" /> |- | 1980 || style="text-align:right;"| {{val|30100}} || Richard P. Brent & [[Edwin McMillan|Edwin M. McMillan]] ||<ref>{{Cite journal |last1=Brent |first1=Richard P. |last2=McMillan |first2=Edwin M. |date=1980 |title=Some new algorithms for high-precision computation of Euler's constant |url=https://www.ams.org/journals/mcom/1980-34-149/S0025-5718-1980-0551307-4/ |journal=Mathematics of Computation |language=en |volume=34 |issue=149 |pages=305–312 |doi=10.1090/S0025-5718-1980-0551307-4 |issn=0025-5718}}</ref> |- | 1993 || style="text-align:right;"| {{val|172000}} || [[Jonathan Borwein]] ||<ref name=":5">{{Cite web |last1=Gourdon |first1=Xavier |last2=Sebah |first2=Pascal |date=2004 |title=The Euler constant: γ |url=https://scipp.ucsc.edu/~haber/archives/physics116A10/euler.pdf |access-date=2024-10-27 |website=scipp.ucsc.edu}}</ref> |- | 1997 || style="text-align:right;" | {{val|1000000}}|| Thomas Papanikolaou ||<ref name=":5">{{Cite web |last1=Gourdon |first1=Xavier |last2=Sebah |first2=Pascal |date=2004 |title=The Euler constant: γ |url=https://scipp.ucsc.edu/~haber/archives/physics116A10/euler.pdf |access-date=2024-10-27 |website=scipp.ucsc.edu}}</ref> |- | 1998 || style="text-align:right;" | {{val|7286255}}|| Xavier Gourdon ||<ref name=":5">{{Cite web |last1=Gourdon |first1=Xavier |last2=Sebah |first2=Pascal |date=2004 |title=The Euler constant: γ |url=https://scipp.ucsc.edu/~haber/archives/physics116A10/euler.pdf |access-date=2024-10-27 |website=scipp.ucsc.edu}}</ref> |- | 1999 || style="text-align:right;"| {{val|108000000}} || Patrick Demichel and Xavier Gourdon ||<ref name=":5" /> |- | March 13, 2009 || style="text-align:right;"| {{val|29844489545}} || Alexander J. Yee & Raymond Chan ||{{r|Yee2011|Y_cruncher}} |- | December 22, 2013 || style="text-align:right;"| {{val|119,377,958,182}} || Alexander J. Yee ||{{r|Y_cruncher}} |- | March 15, 2016 || style="text-align:right;"| {{val|160,000,000,000}} || Peter Trueb ||{{r|Y_cruncher}} |- | May 18, 2016 || style="text-align:right;"| {{val|250,000,000,000}} || Ron Watkins ||{{r|Y_cruncher}} |- | August 23, 2017 || style="text-align:right;"| {{val|477,511,832,674}} || Ron Watkins ||{{r|Y_cruncher}} |- | May 26, 2020 || style="text-align:right;"| {{val|600,000,000,100}} || Seungmin Kim & Ian Cutress ||{{r|Y_cruncher|MascheroniConst_PolCol}} |- | May 13, 2023 || style="text-align:right;"| {{val|700,000,000,000}} || Jordan Ranous & Kevin O'Brien ||{{r|Y_cruncher}} |- | September 7, 2023 || style="text-align:right;"| {{val|1,337,000,000,000}} || Andrew Sun || {{r|Y_cruncher}} |} ==Generalizations== === Stieltjes constants === {{Main|Stieltjes constants}} [[File:Generalisation of Euler–Mascheroni constant.jpg|thumb|upright=2|Euler's generalized constants {{math|abm({{var|-<math>\alpha</math>}})}} for {{math|{{var|α}} > 0}}.|alt=]] ''Euler's generalized constants'' are given by <math display="block">\gamma_\alpha = \lim_{n\to\infty}\left(\sum_{k=1}^n \frac1{k^\alpha} - \int_1^n \frac1{x^\alpha}\,dx\right)</math> for {{math|0 < {{var|α}} < 1}}, with {{mvar|γ}} as the special case {{math|1={{var|α}} = 1}}.{{sfn|Havil|2003|pp=117–18}} Extending for {{math| {{var|α}} > 1}} gives: <math display="block">\gamma_{\alpha} = \zeta(\alpha) - \frac1{\alpha-1}</math> with again the limit: <math display="block">\gamma = \lim_{a\to 1}\left(\zeta(a) - \frac1{a-1}\right)</math> This can be further generalized to <math display="block">c_f = \lim_{n\to\infty}\left(\sum_{k=1}^n f(k) - \int_1^n f(x)\,dx\right)</math> for some arbitrary decreasing function {{mvar|f}}. Setting <math display="block">f_n(x) = \frac{(\log x)^n}{x}</math> gives rise to the [[Stieltjes constants]] <math>\gamma_n</math>, that occur in the [[Laurent series]] expansion of the [[Riemann zeta function]]: : <math>\zeta(1+s)=\frac{1}{s}+\sum_{n=0}^\infty \frac{(-1)^n}{n!} \gamma_n s^n.</math> with <math>\gamma_0 = \gamma = 0.577\dots</math> {| class="wikitable" |''n'' |approximate value of γ<sub>''n''</sub> |[[OEIS]] |- |0 | +0.5772156649015 |{{OEIS link|A001620}} |- |1 |−0.0728158454836 |{{OEIS link|A082633}} |- |2 |−0.0096903631928 |{{OEIS link|A086279}} |- |3 | +0.0020538344203 |{{OEIS link|A086280}} |- |4 | +0.0023253700654 |{{OEIS link|A086281}} |- |100 |−4.2534015717080 × 10<sup>17</sup> | |- |1000 |−1.5709538442047 × 10<sup>486</sup> | |} === Euler-Lehmer constants === ''Euler–Lehmer constants'' are given by summation of inverses of numbers in a common modulo class:{{r|RamMurtySaradha2010}} <math display="block">\gamma(a,q) = \lim_{x\to \infty}\left (\sum_{0<n\le x \atop n\equiv a \pmod q} \frac1{n}-\frac{\log x}{q}\right).</math> The basic properties are <math display="block">\begin{align} &\gamma(0,q) = \frac{\gamma -\log q}{q}, \\ &\sum_{a=0}^{q-1} \gamma(a,q)=\gamma, \\ &q\gamma(a,q) = \gamma-\sum_{j=1}^{q-1}e^{-\frac{2\pi aij}{q}}\log\left(1-e^{\frac{2\pi ij}{q}}\right), \end{align}</math> and if the [[greatest common divisor]] {{math|1=gcd({{var|a}},{{var|q}}) = {{var|d}}}} then <math display="block">q\gamma(a,q) = \frac{q}{d}\gamma\left(\frac{a}{d},\frac{q}{d}\right)-\log d.</math> ===Masser-Gramain constant=== A two-dimensional generalization of Euler's constant is the [[Masser-Gramain constant]]. It is defined as the following limiting difference:<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Masser-Gramain Constant |url=https://mathworld.wolfram.com/Masser-GramainConstant.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}</ref> :<math>\delta = \lim_{n\to\infty} \left( -\log n + \sum_{k=2}^n \frac{1}{\pi r_k^2} \right)</math> where <math>r_k</math> is the smallest radius of a disk in the complex plane containing at least <math>k</math> [[Gaussian integer|Gaussian integers]]. The following bounds have been established: <math>1.819776 < \delta < 1.819833</math>.<ref>{{Cite web |last1=Melquiond |first1=Guillaume |last2=Nowak |first2=W. Georg |last3=Zimmermann |first3=Paul |title=Numerical approximation of the Masser-Gramain constant to four decimal digits |url=https://www.lri.fr/~melquion/doc/12-mc.pdf |access-date=2024-10-03}}</ref> == See also == * [[Harmonic series (mathematics)|Harmonic series]] * [[Riemann zeta function]] * [[Stieltjes constants]] * [[Meissel-Mertens constant]] == References == * {{cite journal |last=Bretschneider |first=Carl Anton |date=1837 |orig-date=1835 |title=Theoriae logarithmi integralis lineamenta nova |journal=Crelle's Journal |volume=17 |pages=257–285 |language=la |url=https://zenodo.org/record/1448830 }} * {{cite book |last=Havil |first=Julian |date=2003 |title=Gamma: Exploring Euler's Constant |publisher=Princeton University Press |isbn=978-0-691-09983-5 }} * {{cite journal |last=Lagarias |first=Jeffrey C. |date=2013 |title=Euler's constant: Euler's work and modern developments |journal=[[Bulletin of the American Mathematical Society]] |volume=50 |issue=4 |page=556 |doi=10.1090/s0273-0979-2013-01423-x |arxiv=1303.1856 |s2cid=119612431 }} ===Footnotes=== {{Reflist|refs= <ref name=OEIS_A002852>{{Cite OEIS |A002852 |Continued fraction for Euler's constant}}</ref> <ref name=DeMorgan183642>{{cite book |last=De Morgan |first=Augustus |author-link=Augustus De Morgan |date=1836–1842 |title=The differential and integral calculus |location=London |publisher=Baldwin and Craddoc |at="{{math|''γ''}}" on [https://books.google.com/books?id=95x4IrIcHrgC&pg=PA578 p. 578] }}</ref> <ref name=CavesFuchs1996>{{cite book |last1=Caves |first1=Carlton M. |author-link1=Carlton M. Caves |last2=Fuchs |first2=Christopher A. |date=1996 |chapter=Quantum information: How much information in a state vector? |title=The Dilemma of Einstein, Podolsky and Rosen – 60 Years Later |publisher=Israel Physical Society |isbn=9780750303941 |oclc=36922834 |arxiv=quant-ph/9601025 |bibcode=1996quant.ph..1025C}}</ref> <ref name=HaiblePapanikolaou1998>{{Cite book |last1=Haible |first1=Bruno |last2=Papanikolaou |first2=Thomas |title=Algorithmic Number Theory |chapter=Fast multiprecision evaluation of series of rational numbers |date=1998 |editor-last=Buhler |editor-first=Joe P. |series=Lecture Notes in Computer Science |volume=1423 |publisher=Springer |pages=338–350 |doi=10.1007/bfb0054873 |isbn=9783540691136}}</ref> <ref name=Papanikolaou1997>{{cite thesis |last=Papanikolaou |first=T. |date=1997 |title=Entwurf und Entwicklung einer objektorientierten Bibliothek für algorithmische Zahlentheorie |publisher=Universität des Saarlandes |url=https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/papa.diss.ps.gz |language=de}}</ref> <ref name=Sondow2003a>See also {{cite journal |last1=Sondow |first1=Jonathan |date=2003 |title=Criteria for irrationality of Euler's constant |journal=Proceedings of the American Mathematical Society |volume=131 |issue=11 |pages=3335–3344 |doi=10.1090/S0002-9939-03-07081-3 |s2cid=91176597 |arxiv=math.NT/0209070 }}</ref> <ref name=Mahler1968>{{Cite journal |last1=Mahler |first1=Kurt |date=4 June 1968 |title=Applications of a theorem by A. B. Shidlovski |journal=Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences |volume=305 |issue=1481 |pages=149–173 |doi=10.1098/rspa.1968.0111 |bibcode=1968RSPSA.305..149M |s2cid=123486171|url=https://carmamaths.org/resources/mahler/docs/169.pdf}}</ref> <ref name=RamMurtySaradha2010>{{Cite journal |last1=Ram Murty |first1=M. |first2=N. |last2=Saradha |date=2010 |title=Euler–Lehmer constants and a conjecture of Erdos |journal=Journal of Number Theory |volume=130 |issue=12 |pages=2671–2681 |doi=10.1016/j.jnt.2010.07.004 |issn=0022-314X |doi-access=free }}</ref> <ref name=Aptekarev2009>{{cite arXiv |last=Aptekarev |first=A. I. |date=28 February 2009 |title=On linear forms containing the Euler constant |class=math.NT |eprint=0902.1768}}</ref> <ref name=Rivoal2012>{{Cite journal |last=Rivoal |first=Tanguy |date=2012 |title=On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant |journal=Michigan Mathematical Journal |volume=61 |issue=2 |pages=239–254 |doi=10.1307/mmj/1339011525 |issn=0026-2285 |doi-access=free |url=https://projecteuclid.org/euclid.mmj/1339011525}}</ref> <ref name=MurtyZaytseva2013>{{Cite journal |last1=Murty |first1=M. Ram |last2=Zaytseva |first2=Anastasia |date=2013 |title=Transcendence of Generalized Euler Constants |journal=The American Mathematical Monthly |volume=120 |issue=1 |pages=48–54 |doi=10.4169/amer.math.monthly.120.01.048 |jstor=10.4169/amer.math.monthly.120.01.048 |s2cid=20495981 |issn=0002-9890 |url=https://www.jstor.org/stable/10.4169/amer.math.monthly.120.01.048 }}</ref> <ref name="Krämer2005">{{cite book |last1=Krämer |first1= Stefan |date=2005 |title=Die Eulersche Konstante {{math|<i>γ</i>}} und verwandte Zahlen |publisher=University of Göttingen |language=de }}</ref> <ref name=Sondow1998>{{cite journal |last1=Sondow |first1=Jonathan |date=1998 |title=An antisymmetric formula for Euler's constant |journal=Mathematics Magazine |volume=71 |issue=3 |pages=219–220 |doi=10.1080/0025570X.1998.11996638 |access-date=2006-05-29 |url=http://home.earthlink.net/~jsondow/id8.html |archive-date=2011-06-04 |archive-url=https://web.archive.org/web/20110604123534/http://home.earthlink.net/~jsondow/id8.html}}</ref> <ref name=Sondow2005>{{cite journal |last=Sondow |first=Jonathan |date=2005 |title=Double integrals for Euler's constant and <math>\log \frac{4}{\pi}</math> and an analog of Hadjicostas's formula |journal=[[American Mathematical Monthly]] |volume=112 |issue=1 |pages=61–65 |doi=10.2307/30037385 |jstor=30037385 |arxiv=math.CA/0211148}}</ref> <ref name=Sondow2005a>{{cite book |last1= Sondow |first1=Jonathan |date=1 August 2005a |title=New Vacca-type rational series for Euler's constant and its 'alternating' analog <math>\log \frac{4}{\pi}</math> |arxiv=math.NT/0508042}}</ref> <ref name=SondowZudilin2006>{{cite journal |last1=Sondow |first1=Jonathan |first2=Wadim |last2=Zudilin |date=2006 |title=Euler's constant, {{math|''q''}}-logarithms, and formulas of Ramanujan and Gosper |journal=The Ramanujan Journal |volume=12 |issue=2 |pages=225–244 |doi=10.1007/s11139-006-0075-1 |s2cid=1368088 |arxiv=math.NT/0304021}}</ref> <ref name=DeTemple1993>{{cite journal |last=DeTemple |first=Duane W. |date=May 1993 |title=A Quicker Convergence to Euler's Constant |journal=The American Mathematical Monthly |volume=100 |issue=5 |pages=468–470 |doi=10.2307/2324300 |issn=0002-9890 |jstor=2324300}}</ref> <ref name=Blagouchine2016>{{cite journal |last=Blagouchine |first=Iaroslav V. |date=2016 |title=Expansions of generalized Euler's constants into the series of polynomials in {{math|π<sup>−2</sup>}} and into the formal enveloping series with rational coefficients only |journal=[[Journal of Number Theory|J. Number Theory]] |volume=158 |pages=365–396 |doi=10.1016/j.jnt.2015.06.012 |arxiv=1501.00740}}</ref> <ref name=Vacca1910>{{cite journal |last1=Vacca |first1=G. |author-link=Giovanni Vacca (mathematician) |date=1910 |title=A new analytical expression for the number π and some historical considerations |journal=Bulletin of the American Mathematical Society |volume=16 |pages=368–369|doi=10.1090/S0002-9904-1910-01919-4 |doi-access=free }}</ref> <ref name=Vacca1926>{{cite journal |last1=Vacca |first1=G. |author-link=Giovanni Vacca (mathematician) |date=1926 |title=Nuova serie per la costante di Eulero, {{math|''C''}} = 0,577...". Rendiconti, Accademia Nazionale dei Lincei, Roma, Classe di Scienze Fisiche |journal=Matematiche e Naturali |volume=6 |issue=3 |pages=19–20 |language=it}}</ref> <ref name=Glaisher1910>{{cite journal |last=Glaisher |first=James Whitbread Lee |author-link=James Whitbread Lee Glaisher |date=1910 |title=On Dr. Vacca's series for {{math|''γ''}} |journal=Q. J. Pure Appl. Math. |volume=41 |pages=365–368}}</ref> <ref name=Hardy1912>{{ cite journal |last1= Hardy |first1=G.H. |date=1912 |title=Note on Dr. Vacca's series for {{math|''γ''}} |journal=Q. J. Pure Appl. Math. |volume=43 |pages=215–216}}</ref> <ref name=Kluyver1927>{{cite journal |last1=Kluyver |first1=J.C. |date=1927 |title=On certain series of Mr. Hardy |journal=Q. J. Pure Appl. Math. |volume=50 |pages=185–192}}</ref> <ref name=Blagouchine2018>{{cite journal |last1=Blagouchine |first1=Iaroslav V. |date=2018 |title=Three notes on Ser's and Hasse's representations for the zeta-functions |journal=INTEGERS: The Electronic Journal of Combinatorial Number Theory |volume=18A |issue=#A3 |pages=1–45 |doi=10.5281/zenodo.10581385 |bibcode=2016arXiv160602044B |arxiv=1606.02044 |url=http://math.colgate.edu/~integers/vol18a.html}}</ref> <ref name=Alabdulmohsin2018_1478>{{cite book |last=Alabdulmohsin |first=Ibrahim M. |date=2018 |title=Summability Calculus. A Comprehensive Theory of Fractional Finite Sums |publisher=[[Springer Science+Business Media|Springer]] |pages=147–8 |isbn=9783319746487}}</ref> <ref name=OEIS_A302120>{{cite OEIS|A302120|Absolute value of the numerators of a series converging to Euler's constant}}</ref> <ref name=OEISA302121>{{cite OEIS|A302121|Denominators of a series converging to Euler's constant}}</ref> <ref name=excursions>{{cite book | last = Ramaré | first = Olivier | doi = 10.1007/978-3-030-73169-4 | isbn = 978-3-030-73168-7 | location = Basel | mr = 4400952 | page = 131 | publisher = Birkhäuser/Springer | series = Birkhäuser Advanced Texts: Basel Textbooks | title = Excursions in Multiplicative Number Theory | url = https://books.google.com/books?id=n1piEAAAQBAJ&pg=PA131 | year = 2022| s2cid = 247271545 }}</ref> <ref name=OEIS_A073004>{{cite OEIS|A073004|Decimal expansion of exp(gamma)}}</ref> <ref name=ChoiSrivastava2010>{{Cite journal |last1=Choi |first1=Junesang |last2=Srivastava |first2=H.M. |date=1 September 2010 |title=Integral Representations for the Euler–Mascheroni Constant {{math|''γ''}} |journal=Integral Transforms and Special Functions |volume=21 |issue=9 |pages=675–690 |doi=10.1080/10652461003593294 |s2cid=123698377 |issn=1065-2469}}</ref> <ref name=Sondow2003>{{cite arXiv |last1=Sondow |first1=Jonathan |date=2003 |eprint=math.CA/0306008 |title= An infinite product for {{math|''e{{sup|γ}}''}} via hypergeometric formulas for Euler's constant, {{math|''γ''}}}}</ref> <ref name=Knuth1962>{{cite journal |last1=Knuth |first1=Donald E. |author-link=Donald Knuth |date=July 1962 |title=Euler's Constant to 1271 Places |journal=Mathematics of Computation |volume=16 |issue=79 |pages=275–281 |publisher=[[American Mathematical Society]] |doi=10.2307/2004048 |jstor=2004048 |url=https://www.jstor.org/stable/2004048}}</ref> <ref name=Yee2011>{{cite web |last=Yee |first=Alexander J. |date=7 March 2011 |title=Large Computations |website=www.numberworld.org |url=http://www.numberworld.org/nagisa_runs/computations.html}}</ref> <ref name=Y_cruncher>{{cite web |last=Yee |first=Alexander J. |title=Records Set by y-cruncher |website=www.numberworld.org |access-date=30 April 2018 |url=http://www.numberworld.org/y-cruncher/records.html }}<br/> {{cite web |last=Yee |first=Alexander J. |title=y-cruncher - A Multi-Threaded Pi-Program |website=www.numberworld.org |url=http://www.numberworld.org/y-cruncher/}}</ref> <ref name=MascheroniConst_PolCol>{{cite web |title=Euler-Mascheroni Constant |website=Polymath Collector |date=15 February 2020 |url=https://ehfd.github.io/world-record/euler-mascheroni-constant/}}</ref> <ref name=ConnallonHodgins2021>{{cite journal | last1 = Connallon | first1 = Tim | last2 = Hodgins | first2 = Kathryn A. | date = October 2021 | doi = 10.1111/evo.14372 | issue = 11 | journal = Evolution | pages = 2624–2640 | title = Allen Orr and the genetics of adaptation | volume = 75| pmid = 34606622 | s2cid = 238357410 }}</ref> <ref name=Berndt2008>{{cite journal |last1=Berndt |first1=Bruce C.|author-link=Bruce C. Berndt |date=January 2008 |title=A fragment on Euler's constant in Ramanujan's lost notebook |journal=South East Asian J. Math. & Math. Sc |volume=6 |issue=2 |pages=17–22 |doi= |jstor= |url=https://scholarworks.utrgv.edu/cgi/viewcontent.cgi?article=1130&context=mss_fac}}</ref> <ref name=A001620>{{Cite OEIS|A001620|Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma}}</ref> }} == Further reading == * {{cite journal |author1=Borwein, Jonathan M. |author2=David M. Bradley |author3=Richard E. Crandall |title=Computational Strategies for the Riemann Zeta Function |journal=Journal of Computational and Applied Mathematics |date=2000 |volume=121 |issue=1–2 |pages=11 |doi=10.1016/s0377-0427(00)00336-8 |bibcode=2000JCoAM.121..247B |ref=none |doi-access=free }} Derives {{math|''γ''}} as sums over Riemann zeta functions. * {{cite book |last=Finch |first=Steven R. |date=2003 |title=Mathematical Constants|series= Encyclopedia of Mathematics and its Applications|volume=94|publisher=Cambridge University Press|location=Cambridge|isbn=0-521-81805-2|ref=none}} * {{cite journal |first1=I. |last1=Gerst |title=Some series for Euler's constant |date=1969 |journal=Amer. Math. Monthly |doi=10.2307/2316370 |volume=76 |issue=3 |pages=237–275 |jstor=2316370 |ref=none}} * {{cite journal |last=Glaisher |first=James Whitbread Lee |author-link=James Whitbread Lee Glaisher |date=1872 |title=On the history of Euler's constant |journal=Messenger of Mathematics |volume=1 |pages=25–30 |jfm=03.0130.01 |ref=none}} * {{cite web |last1=Gourdon|first1=Xavier|last2=Sebah|first2=P. |date=2002 |title=Collection of formulae for Euler's constant, {{math|''γ''}} |url=http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html |ref=none}} * {{cite web |last1=Gourdon|first1=Xavier|last2=Sebah|first2=P. |date=2004 |title=The Euler constant: {{math|''γ''}} |url=http://numbers.computation.free.fr/Constants/Gamma/gamma.html |ref=none}} * Julian Havil (2003): ''GAMMA: Exploring Euler's Constant'', Princeton University Press, ISBN 978-0-69114133-6. * {{cite journal |first1=E. A. |last1= Karatsuba |title=Fast evaluation of transcendental functions |journal=Probl. Inf. Transm. |volume =27 |number=44 |pages=339–360 |date=1991 |ref=none}} * {{cite journal |last1=Karatsuba |first1=E.A. |date=2000 |title=On the computation of the Euler constant {{math|''γ''}} |journal=Journal of Numerical Algorithms |volume=24 |issue=1–2 |pages=83–97 |doi=10.1023/A:1019137125281 |s2cid=21545868 |ref=none}} * {{cite book |last=Knuth |first=Donald |author-link=Donald Knuth |date=1997 |title=[[The Art of Computer Programming|The Art of Computer Programming, Vol. 1]] |edition=3rd |publisher=Addison-Wesley |isbn=0-201-89683-4 |pages=75, 107, 114, 619–620 |ref=none}} * {{cite journal |first1=D. H. |last1=Lehmer |date=1975 |title=Euler constants for arithmetical progressions |journal=Acta Arith. |volume=27 |number=1 |pages=125–142 |url=http://matwbn.icm.edu.pl/ksiazki/aa/aa27/aa27121.pdf |doi=10.4064/aa-27-1-125-142 |ref=none|doi-access=free }} * {{cite journal |last1=Lerch |first1=M. |date=1897 |title=Expressions nouvelles de la constante d'Euler |journal=Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften |volume=42 |page=5 |ref=none}} * {{cite book |last=Mascheroni |first=Lorenzo |author-link=Lorenzo Mascheroni |date=1790 |title=Adnotationes ad calculum integralem Euleri, in quibus nonnulla problemata ab Eulero proposita resolvuntur |publisher=Galeati, Ticini |ref=none}} * {{cite journal |last1=Sondow |first1=Jonathan |date=2002 |title=A hypergeometric approach, via linear forms involving logarithms, to irrationality criteria for Euler's constant |arxiv=math.NT/0211075 |journal=Mathematica Slovaca |volume=59 |pages=307–314 |doi=10.2478/s12175-009-0127-2 |bibcode=2002math.....11075S |s2cid=16340929 |ref=none}} with an Appendix by [https://web.archive.org/web/20130523085959/http://wain.mi.ras.ru/zlobin/ Sergey Zlobin] == External links == * {{springer|title=Euler constant|id=p/e036420|mode=cs1}} * {{MathWorld|urlname=Euler-MascheroniConstant|title=Euler–Mascheroni constant|ref=none}} * [https://jonathansondow.github.io/ Jonathan Sondow.] * [http://www.ccas.ru/personal/karatsuba/algen.htm Fast Algorithms and the FEE Method], E.A. Karatsuba (2005) * Further formulae which make use of the constant: [http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html Gourdon and Sebah (2004).] {{Leonhard Euler}} {{Authority control}} {{DEFAULTSORT:Euler's constant}} [[Category:Mathematical constants]] [[Category:Unsolved problems in number theory]] [[Category:Leonhard Euler]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Block indent
(
edit
)
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Distinguish
(
edit
)
Template:Infobox mathematical constant
(
edit
)
Template:Leonhard Euler
(
edit
)
Template:Log(x)
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:OEIS link
(
edit
)
Template:R
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Tmath
(
edit
)
Template:Unsolved
(
edit
)
Template:Use shortened footnotes
(
edit
)
Template:Val
(
edit
)