Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler's four-square identity
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Product of sums of four squares expressed as a sum of four squares}} In [[mathematics]], '''Euler's four-square identity''' says that the product of two numbers, each of which is a sum of four [[square (algebra)|square]]s, is itself a sum of four squares. ==Algebraic identity== For any pair of quadruples from a [[commutative ring]], the following expressions are equal: <math display="block">\begin{align} & \left(a_1^2+a_2^2+a_3^2+a_4^2\right) \left(b_1^2+b_2^2+b_3^2+b_4^2\right) \\[3mu] &\qquad = \left(a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4\right)^2 + \left(a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3\right)^2 \\[3mu] &\qquad\qquad+ \left(a_1 b_3 - a_2 b_4 + a_3 b_1 + a_4 b_2\right)^2 + \left(a_1 b_4 + a_2 b_3 - a_3 b_2 + a_4 b_1\right)^2. \end{align}</math> [[Leonhard Euler|Euler]] wrote about this identity in a letter dated May 4, 1748 to [[Christian Goldbach|Goldbach]]<ref>''Leonhard Euler: Life, Work and Legacy'', R.E. Bradley and C.E. Sandifer (eds), Elsevier, 2007, p. 193</ref><ref>''Mathematical Evolutions'', A. Shenitzer and J. Stillwell (eds), Math. Assoc. America, 2002, p. 174</ref> (but he used a different sign convention from the above). It can be verified with [[elementary algebra]]. The identity was used by [[Joseph Louis Lagrange|Lagrange]] to prove his [[Lagrange's four-square theorem|four square theorem]]. More specifically, it implies that it is sufficient to prove the theorem for [[prime numbers]], after which the more general theorem follows. The sign convention used above corresponds to the signs obtained by multiplying two quaternions. Other sign conventions can be obtained by changing any <math>a_k</math> to <math>-a_k</math>, and/or any <math>b_k</math> to <math>-b_k</math>. If the <math>a_k</math> and <math>b_k</math> are [[real number]]s, the identity expresses the fact that the absolute value of the product of two [[quaternion]]s is equal to the product of their absolute values, in the same way that the [[Brahmagupta–Fibonacci identity|Brahmagupta–Fibonacci two-square identity]] does for [[complex numbers]]. This property is the definitive feature of [[composition algebra]]s. [[Hurwitz's theorem (normed division algebras)|Hurwitz's theorem]] states that an identity of form, <math display="block">\left(a_1^2+a_2^2+a_3^2+\dots+a_n^2\right)\left(b_1^2+b_2^2+b_3^2+\dots+b_n^2\right) = c_1^2+c_2^2+c_3^2+ \dots + c_n^2</math> where the <math>c_i</math> are [[bilinear map|bilinear]] functions of the <math>a_i</math> and <math>b_i</math> is possible only for ''n'' = 1, 2, 4, or 8. ===Proof of the identity using quaternions=== Comment: The proof of Euler's four-square identity is by simple algebraic evaluation. Quaternions derive from the four-square identity, which can be written as the product of two inner products of 4-dimensional vectors, yielding again an inner product of 4-dimensional vectors: {{math|1=(''a''·''a'')(''b''·''b'') = (''a''×''b'')·(''a''×''b'')}}. This defines the quaternion multiplication rule {{math|''a''×''b''}}, which simply reflects Euler's identity, and some mathematics of quaternions. Quaternions are, so to say, the "square root" of the four-square identity. But let the proof go on: Let <math>\alpha = a_1 + a_2 i + a_3 j + a_4 k</math> and <math>\beta = b_1 + b_2 i + b_3 j + b_4 k</math> be a pair of quaternions. Their quaternion conjugates are <math>\alpha^* = a_1 - a_2 i - a_3 j - a_4 k </math> and <math>\beta^* = b_1 - b_2 i - b_3 j - b_4 k</math>. Then <math display="block">A := \alpha \alpha^* = a_1^2 + a_2^2 + a_3^2 + a_4^2</math> and <math display="block">B := \beta \beta^* = b_1^2 + b_2^2 + b_3^2 + b_4^2.</math> The product of these two is <math>A B = \alpha \alpha^* \beta \beta^*</math>, where <math>\beta \beta^*</math> is a real number, so it can commute with the quaternion <math>\alpha^*</math>, yielding <math display="block">A B = \alpha \beta \beta^* \alpha^*.</math> No parentheses are necessary above, because quaternions [[Associative property|associate]]. The conjugate of a product is equal to the commuted product of the conjugates of the product's factors, so <math display="block">A B = \alpha \beta (\alpha \beta)^* = \gamma \gamma^*</math> where <math>\gamma</math> is the [[Quaternion#Hamilton product|Hamilton product]] of <math>\alpha</math> and <math>\beta</math>: <math display="block">\begin{align} \gamma &= \left( a_1 + \langle a_2, a_3, a_4 \rangle\right) \left(b_1 + \langle b_2, b_3, b_4 \rangle\right) \\[3mu] & = a_1 b_1 + a_1 \langle b_2, \ b_3, \ b_4\rangle + \langle a_2, \ a_3, \ a_4\rangle b_1 + \langle a_2, \ a_3, \ a_4\rangle \langle b_2, \ b_3, \ b_4\rangle \\[3mu] & = a_1 b_1 + \langle a_1 b_2, \ a_1 b_3, \ a_1 b_4\rangle + \langle a_2 b_1, \ a_3 b_1, \ a_4 b_1\rangle \\ &\qquad - \langle a_2,\ a_3, \ a_4\rangle \cdot \langle b_2, \ b_3, \ b_4\rangle + \langle a_2, \ a_3, \ a_4\rangle \times \langle b_2, \ b_3, \ b_4\rangle \\[3mu] & = a_1 b_1 + \langle a_1 b_2 + a_2 b_1, \ a_1 b_3 + a_3 b_1, \ a_1 b_4 + a_4 b_1\rangle \\ &\qquad - a_2 b_2 - a_3 b_3 - a_4 b_4 + \langle a_3 b_4 - a_4 b_3, \ a_4 b_2 - a_2 b_4, \ a_2 b_3 - a_3 b_2\rangle \\[3mu] & = (a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4) \\ &\qquad + \langle a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3, \ a_1 b_3 + a_3 b_1 + a_4 b_2 - a_2 b_4, \ a_1 b_4 + a_4 b_1 + a_2 b_3 - a_3 b_2\rangle \\[3mu] \gamma &= (a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4) + (a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3) i \\ &\qquad + (a_1 b_3 + a_3 b_1 + a_4 b_2 - a_2 b_4) j + (a_1 b_4 + a_4 b_1 + a_2 b_3 - a_3 b_2) k. \end{align}</math> Then <math display="block">\begin{align} \gamma^* &= (a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4) - (a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3) i \\ &\qquad - (a_1 b_3 + a_3 b_1 + a_4 b_2 - a_2 b_4) j - (a_1 b_4 + a_4 b_1 + a_2 b_3 - a_3 b_2) k . \end{align}</math> If <math>\gamma = r + \vec u</math> where <math>r</math> is the scalar part and <math>\vec u = \langle u_1, u_2, u_3\rangle</math> is the vector part, then <math>\gamma^* = r - \vec u</math> so <math display="block">\begin{align} \gamma \gamma^* &= (r + \vec u) (r - \vec u) = r^2 - r \vec u + r \vec u - \vec u \vec u = r^2 + \vec u \cdot \vec u - \vec u \times \vec u \\ &= r^2 + \vec u \cdot \vec u = r^2 + u_1^2 + u_2^2 + u_3^2. \end{align}</math> So, <math display="block">\begin{align} A B = \gamma \gamma^* &= (a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4)^2 + (a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3)^2 \\ &\qquad + (a_1 b_3 + a_3 b_1 + a_4 b_2 - a_2 b_4)^2 + (a_1 b_4 + a_4 b_1 + a_2 b_3 - a_3 b_2)^2. \end{align}</math> ==Pfister's identity== Pfister found another square identity for any even power:<ref>Keith Conrad [http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/pfister.pdf Pfister's Theorem on Sums of Squares] from [[University of Connecticut]]</ref> If the <math>c_i</math> are just [[rational functions]] of one set of variables, so that each <math>c_i</math> has a [[denominator]], then it is possible for all <math>n = 2^m</math>. Thus, another four-square identity is as follows: <math display="block">\begin{align} &\left(a_1^2+a_2^2+a_3^2+a_4^2\right)\left(b_1^2+b_2^2+b_3^2+b_4^2\right) \\[5mu] &\quad= \left(a_1 b_4 + a_2 b_3 + a_3 b_2 + a_4 b_1\right)^2 + \left(a_1 b_3 - a_2 b_4 + a_3 b_1 - a_4 b_2\right)^2 \\ &\quad\qquad+ \left(a_1 b_2 + a_2 b_1 + \frac{a_3 u_1}{b_1^2+b_2^2} - \frac{a_4 u_2}{b_1^2+b_2^2}\right)^2 + \left(a_1 b_1 - a_2 b_2 - \frac{a_4 u_1}{b_1^2+b_2^2} - \frac{a_3 u_2}{b_1^2+b_2^2}\right)^2 \end{align}</math> where <math>u_1</math> and <math>u_2</math> are given by <math display="block">\begin{align} u_1 &= b_1^2 b_4 - 2 b_1 b_2 b_3 - b_2^2 b_4 \\ u_2 &= b_1^2 b_3 + 2 b_1 b_2 b_4 - b_2^2 b_3 \end{align}</math> Incidentally, the following identity is also true: <math display="block">u_1^2+u_2^2 = \left(b_1^2+b_2^2\right)^2\left(b_3^2+b_4^2\right)</math> ==See also== *[[Brahmagupta–Fibonacci identity]] (sums of two squares) *[[Degen's eight-square identity]] *[[Pfister's sixteen-square identity]] *[[Latin square]] ==References== <references/> ==External links== *[http://sites.google.com/site/tpiezas/005b/ A Collection of Algebraic Identities] {{Webarchive|url=https://web.archive.org/web/20120306122543/http://sites.google.com/site/tpiezas/005b |date=2012-03-06 }} *[http://math.dartmouth.edu/~euler/correspondence/letters/OO0841.pdf] Lettre CXV from Euler to Goldbach {{Leonhard Euler}} {{DEFAULTSORT:Euler's Four-Square Identity}} [[Category:Algebraic identities]] [[Category:Elementary number theory]] [[Category:Squares in number theory]] [[Category:Leonhard Euler]] [[Category:Quaternions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Leonhard Euler
(
edit
)
Template:Math
(
edit
)
Template:Short description
(
edit
)
Template:Webarchive
(
edit
)