Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler's sum of powers conjecture
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Disproved conjecture in number theory}} In [[number theory]], '''Euler's conjecture''' is a [[List of disproved mathematical ideas|disproved]] [[conjecture]] related to [[Fermat's Last Theorem]]. It was proposed by [[Leonhard Euler]] in 1769. It states that for all [[integers]] {{mvar|n}} and {{mvar|k}} greater than 1, if the sum of {{mvar|n}} many {{mvar|k}}th powers of positive integers is itself a {{mvar|k}}th power, then {{mvar|n}} is greater than or equal to {{mvar|k}}: <math display=block>a_1^k + a_2^k + \dots + a_n^k = b^k \implies n \ge k</math> The conjecture represents an attempt to generalize Fermat's Last Theorem, which is the special case {{math|''n'' {{=}} 2}}: if <math>a_1^k + a_2^k = b^k,</math> then {{math|2 ≥ ''k''}}. Although the conjecture holds for the case {{math|''k'' {{=}} 3}} (which follows from Fermat's Last Theorem for the third powers), it was disproved for {{math|''k'' {{=}} 4}} and {{math|''k'' {{=}} 5}}. It is unknown whether the conjecture fails or holds for any value {{math|''k'' ≥ 6}}. == Background == Euler was aware of the equality {{nowrap|59{{sup|4}} + 158{{sup|4}} {{=}} 133{{sup|4}} + 134{{sup|4}}}} involving sums of four fourth powers; this, however, is not a [[counterexample]] because no term is isolated on one side of the equation. He also provided a complete solution to the four cubes problem as in [[Plato's number]] {{nowrap|3{{sup|3}} + 4{{sup|3}} + 5{{sup|3}} {{=}} 6{{sup|3}}}} or the [[taxicab number]] 1729.<ref>{{cite book |editor-last=Dunham |editor-first=William |year=2007 |title=The Genius of Euler: Reflections on His Life and Work |publisher=The MAA |isbn=978-0-88385-558-4 |page=220 |url=https://books.google.com/books?id=M4-zUnrSxNoC&pg=PA220}}</ref><ref>{{cite web |last=Titus, III |first=Piezas |year=2005 |title=Euler's Extended Conjecture |url=http://www.oocities.org/titus_piezas/Equalsums.htm }}</ref> The general solution of the equation <math>x_1^3+x_2^3=x_3^3+x_4^3</math> is <math display=block>\begin{align} x_1 &=\lambda( 1-(a-3b)(a^2+3b^2)) \\[2pt] x_2 &=\lambda( (a+3b)(a^2+3b^2)-1 )\\[2pt] x_3 &=\lambda( (a+3b)-(a^2+3b^2)^2 )\\[2pt] x_4 &= \lambda( (a^2+3b^2)^2-(a-3b)) \end{align}</math> where {{mvar|a}}, {{mvar|b}} and <math>{\lambda}</math> are any rational numbers. == Counterexamples == Euler's conjecture was disproven by [[Leon J. Lander|L. J. Lander]] and [[Thomas R. Parkin|T. R. Parkin]] in 1966 when, through a direct computer search on a [[CDC 6600]], they found a counterexample for {{math|''k'' {{=}} 5}}.<ref name="LanderParkin">{{cite journal |last1=Lander |first1=L. J. |last2=Parkin |first2=T. R. |year=1966 |title=Counterexample to Euler's conjecture on sums of like powers |journal=Bull. Amer. Math. Soc. |doi=10.1090/S0002-9904-1966-11654-3 |volume=72 |issue=6 |page=1079|doi-access=free }}</ref> This was published in a paper comprising just two sentences.<ref name="LanderParkin" /> A total of three primitive (that is, in which the summands do not all have a common factor) counterexamples are known: <math display=block>\begin{align} 144^5 &= 27^5 + 84^5 + 110^5 + 133^5 \\ 14132^5 &= (-220)^5 + 5027^5 + 6237^5 + 14068^5 \\ 85359^5 &= 55^5 + 3183^5 + 28969^5 + 85282^5 \end{align}</math> (Lander & Parkin, 1966); (Scher & Seidl, 1996); (Frye, 2004). In 1988, [[Noam Elkies]] published a method to construct an infinite sequence of counterexamples for the {{math|''k'' {{=}} 4}} case.<ref name="Elkies1988">{{cite journal |last=Elkies |first=Noam |authorlink=Noam Elkies |year=1988 |title=On ''A''<sup>4</sup> + ''B''<sup>4</sup> + ''C''<sup>4</sup> = ''D''<sup>4</sup> |journal=[[Mathematics of Computation]] |doi=10.1090/S0025-5718-1988-0930224-9 |mr=0930224 |jstor=2008781 |volume=51 |issue=184 |pages=825–835 |url=https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0930224-9/S0025-5718-1988-0930224-9.pdf |doi-access=free }}</ref> His smallest counterexample was <math display=block>20615673^4 = 2682440^4 + 15365639^4 + 18796760^4.</math> A particular case of Elkies' solutions can be reduced to the identity<ref>{{cite web |title=Elkies' ''a''<sup>4</sup>+''b''<sup>4</sup>+''c''<sup>4</sup> = ''d''<sup>4</sup> |url=https://groups.google.com/group/sci.math/browse_thread/thread/15beef75eaddcb1b?hl=en#}}</ref><ref>{{cite book|year = 2010|chapter = Sums of Three Fourth Powers (Part 1)|title = A Collection of Algebraic Identities|first = Tito|last = Piezas III|chapter-url = http://sites.google.com/site/tpiezas/014|access-date = April 11, 2022}}</ref> <math display=block>(85v^2 + 484v - 313)^4 + (68v^2 - 586v + 10)^4 + (2u)^4 = (357v^2 - 204v + 363)^4,</math> where <math display=block>u^2 = 22030 + 28849v - 56158v^2 + 36941v^3 - 31790v^4.</math> This is an [[elliptic curve]] with a [[rational point]] at {{math|''v''<sub>1</sub> {{=}} −{{sfrac|31|467}}}}. From this initial rational point, one can compute an infinite collection of others. Substituting {{math|''v''<sub>1</sub>}} into the identity and removing common factors gives the numerical example cited above. In 1988, [[Roger Frye]] found the smallest possible counterexample <math display=block>95800^4 + 217519^4 + 414560^4 = 422481^4</math> for {{math|''k'' {{=}} 4}} by a direct computer search using techniques suggested by Elkies. This solution is the only one with values of the variables below 1,000,000.<ref>{{citation | last = Frye | first = Roger E. | year = 1988 | title = Proceedings of Supercomputing 88, Vol.II: Science and Applications | contribution = Finding 95800<sup>4</sup> + 217519<sup>4</sup> + 414560<sup>4</sup> = 422481<sup>4</sup> on the Connection Machine | doi = 10.1109/SUPERC.1988.74138 | pages = 106–116| s2cid = 58501120 }}</ref> == Generalizations == [[File:Plato_number.svg|thumb|250px|One interpretation of Plato's number, {{nowrap|3<sup>3</sup> + 4<sup>3</sup> + 5<sup>3</sup> {{=}} 6<sup>3</sup>}}]] {{main article|Lander, Parkin, and Selfridge conjecture}} In 1967, L. J. Lander, T. R. Parkin, and [[John Selfridge]] conjectured<ref name="autogenerated446">{{cite journal |last1=Lander |first1=L. J. |last2=Parkin |first2=T. R. |last3=Selfridge |first3=J. L. |year=1967 |title=A Survey of Equal Sums of Like Powers |journal=[[Mathematics of Computation]] |doi=10.1090/S0025-5718-1967-0222008-0 |jstor=2003249 |volume=21 |issue=99 |pages=446–459 |doi-access=free }}</ref> that if :<math>\sum_{i=1}^{n} a_i^k = \sum_{j=1}^{m} b_j^k</math>, where {{math|''a<sub>i</sub>'' ≠ ''b<sub>j</sub>''}} are positive integers for all {{math|1 ≤ ''i'' ≤ ''n''}} and {{math|1 ≤ ''j'' ≤ ''m''}}, then {{math|''m'' + ''n'' ≥ ''k''}}. In the special case {{math|''m'' {{=}} 1}}, the conjecture states that if :<math>\sum_{i=1}^{n} a_i^k = b^k</math> (under the conditions given above) then {{math|''n'' ≥ ''k'' − 1}}. The special case may be described as the problem of giving a [[integer partition|partition]] of a perfect power into few like powers. For {{math|''k'' {{=}} 4, 5, 7, 8}} and {{math|''n'' {{=}} ''k''}} or {{math|''k'' − 1}}, there are many known solutions. Some of these are listed below. See {{OEIS2C|A347773}} for more data. ==={{math|''k'' {{=}} 3}}=== <math display="block">3^3 + 4^3 + 5^3 = 6^3</math> ([[Plato's number]] 216) This is the case {{math|1=''a'' = 1}}, {{math|1=''b'' = 0}} of [[Srinivasa Ramanujan]]'s formula<ref name=Weisstein>{{cite web| url = http://mathworld.wolfram.com/DiophantineEquation3rdPowers.html| title = MathWorld : Diophantine Equation--3rd Powers}}</ref> <math display=block>(3a^2+5ab-5b^2)^3 + (4a^2-4ab+6b^2)^3 + (5a^2-5ab-3b^2)^3 = (6a^2-4ab+4b^2)^3</math> A cube as the sum of three cubes can also be parameterized in one of two ways:<ref name=Weisstein/> <math display=block>\begin{align} a^3(a^3+b^3)^3 &= b^3(a^3+b^3)^3+a^3(a^3-2b^3)^3+b^3(2a^3-b^3)^3 \\[6pt] a^3(a^3+2b^3)^3 &= a^3(a^3-b^3)^3+b^3(a^3-b^3)^3+b^3(2a^3+b^3)^3. \end{align}</math> The number 2,100,000<sup>3</sup> can be expressed as the sum of three positive cubes in nine different ways.<ref name=Weisstein/> ==={{math|''k'' {{=}} 4}}=== <math display=block>\begin{align} 422481^4 &= 95800^4 + 217519^4 + 414560^4 \\[4pt] 353^4 &= 30^4 + 120^4 + 272^4 + 315^4 \end{align}</math> (R. Frye, 1988);<ref name="Elkies1988"/> (R. Norrie, smallest, 1911).<ref name="autogenerated446"/> ==={{math|''k'' {{=}} 5}}=== <math display=block>\begin{align} 144^5 &= 27^5 + 84^5 + 110^5 + 133^5 \\[2pt] 72^5 &= 19^5 + 43^5 + 46^5 + 47^5 + 67^5 \\[2pt] 94^5 &= 21^5 + 23^5 + 37^5 + 79^5 + 84^5 \\[2pt] 107^5 &= 7^5 + 43^5 + 57^5 + 80^5 + 100^5 \end{align}</math> (Lander & Parkin, 1966);<ref name="mathologer">{{cite web |url=https://www.youtube.com/watch?v=AO-W5aEJ3Wg | archive-url=https://ghostarchive.org/varchive/youtube/20211211/AO-W5aEJ3Wg| archive-date=2021-12-11 | url-status=live|title=Euler's and Fermat's last theorems, the Simpsons and CDC6600 |author=Burkard Polster |website=[[YouTube]] |date=March 24, 2018 |author-link=Burkard Polster <!-- |work=[[Mathologer]] --> |type=video |access-date=2018-03-24}}{{cbignore}}</ref><ref>{{cite web| url = https://mathworld.wolfram.com/DiophantineEquation5thPowers.html| title = MathWorld: Diophantine Equation--5th Powers}}</ref><ref>{{cite web| url = https://pat7.com/jp/s515-10007-t| title = A Table of Fifth Powers equal to Sums of Five Fifth Powers}}</ref> (Lander, Parkin, Selfridge, smallest, 1967);<ref name="autogenerated446"/> (Lander, Parkin, Selfridge, second smallest, 1967);<ref name="autogenerated446"/> (Sastry, 1934, third smallest).<ref name="autogenerated446"/> ==={{math|''k'' {{=}} 6}}=== It has been known since 2002 that there are no solutions for {{math|1=''k'' = 6}} whose final term is ≤ 730000.<ref>Giovanni Resta and Jean-Charles Meyrignac (2002). [https://www.ams.org/journals/mcom/2003-72-242/S0025-5718-02-01445-X/S0025-5718-02-01445-X.pdf The Smallest Solutions to the Diophantine Equation <math>a^6+b^6+c^6+d^6+e^6=x^6+y^6</math>], Mathematics of Computation, v. 72, p. 1054 (See '''further work''' section).</ref> ==={{math|''k'' {{=}} 7}}=== <math display=block>568^7 = 127^7 + 258^7 + 266^7 + 413^7 + 430^7 + 439^7 + 525^7</math> (M. Dodrill, 1999).<ref>{{cite web| url = https://mathworld.wolfram.com/DiophantineEquation7thPowers.html| title = MathWorld: Diophantine Equation--7th Powers}}</ref> ==={{math|''k'' {{=}} 8}}=== <math display=block>1409^8 = 90^8 + 223^8 + 478^8 + 524^8 + 748^8 + 1088^8 + 1190^8 + 1324^8 </math> (S. Chase, 2000).<ref>{{cite web| url = https://mathworld.wolfram.com/DiophantineEquation8thPowers.html| title = MathWorld: Diophantine Equation--8th Powers}}</ref> ==See also== * [[Jacobi–Madden equation]] *[[Prouhet–Tarry–Escott problem]] *[[Beal conjecture]] *[[Pythagorean quadruple]] *[[Generalized taxicab number]] *[[Sums of powers]], a list of related conjectures and theorems == References == {{reflist}} == External links == * Tito Piezas III, [http://sites.google.com/site/tpiezas/Home/ A Collection of Algebraic Identities] {{Webarchive|url=https://web.archive.org/web/20111001021837/http://sites.google.com/site/tpiezas/Home |date=2011-10-01 }} * Jaroslaw Wroblewski, [http://www.math.uni.wroc.pl/~jwr/eslp/ Equal Sums of Like Powers] * Ed Pegg Jr., [https://web.archive.org/web/20080410224256/http://www.maa.org/editorial/mathgames/mathgames_11_13_06.html Math Games, Power Sums] * James Waldby, [http://pat7.com/jp/s515-10007-t A Table of Fifth Powers equal to a Fifth Power (2009)] * [[Robert Gerbicz|R. Gerbicz]], J.-C. Meyrignac, U. Beckert, [https://arxiv.org/abs/1108.0462 All solutions of the Diophantine equation ''a''<sup>6</sup> + ''b''<sup>6</sup> = ''c''<sup>6</sup> + ''d''<sup>6</sup> + ''e''<sup>6</sup> + ''f''<sup>6</sup> + ''g''<sup>6</sup> for ''a'',''b'',''c'',''d'',''e'',''f'',''g'' < 250000 found with a distributed Boinc project] * [http://euler.free.fr/ EulerNet: Computing Minimal Equal Sums Of Like Powers] * {{MathWorld |title=Euler's Sum of Powers Conjecture |urlname=EulersSumofPowersConjecture}} * {{MathWorld |title=Euler Quartic Conjecture |urlname=EulerQuarticConjecture}} * {{MathWorld |title=Diophantine Equation--4th Powers |urlname=DiophantineEquation4thPowers}} * [https://web.archive.org/web/20071105172444/http://library.thinkquest.org/28049/Euler%27s%20conjecture.html Euler's Conjecture] at library.thinkquest.org * [http://www.mathsisgoodforyou.com/conjecturestheorems/eulerconjecture.htm A simple explanation of Euler's Conjecture] at Maths Is Good For You! {{Leonhard Euler}} [[Category:Diophantine equations]] [[Category:Disproved conjectures]] [[Category:Leonhard Euler]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cbignore
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Leonhard Euler
(
edit
)
Template:Main article
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:OEIS2C
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Webarchive
(
edit
)