Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler numbers
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Use American English|date = March 2019}} {{short description|Integers occurring in the coefficients of the Taylor series of 1/cosh t}} {{confused|Eulerian number|Euler's number}} {{other uses|List of things named after Leonhard Euler#Numbers}} In [[mathematics]], the '''Euler numbers''' are a [[sequence]] ''E<sub>n</sub>'' of [[integer]]s {{OEIS|A122045}} defined by the [[Taylor series]] expansion :<math>\frac{1}{\cosh t} = \frac{2}{e^{t} + e^ {-t} } = \sum_{n=0}^\infty \frac{E_n}{n!} \cdot t^n</math>, where <math>\cosh (t)</math> is the [[Hyperbolic function|hyperbolic cosine function]]. The Euler numbers are related to a special value of the [[Euler polynomials]], namely: :<math>E_n=2^nE_n(\tfrac 12).</math> The Euler numbers appear in the [[Taylor series]] expansions of the [[Trigonometric functions|secant]] and [[hyperbolic secant]] functions. The latter is the function in the definition. They also occur in [[combinatorics]], specifically when counting the number of [[alternating permutation]]s of a set with an even number of elements. == Examples == The odd-indexed Euler numbers are all [[0 (number)|zero]]. The even-indexed ones {{OEIS|id=A028296}} have alternating signs. Some values are: :{| |''E''<sub>0</sub> ||=||align=right| 1 |- |''E''<sub>2</sub> ||=||align=right| −1 |- |''E''<sub>4</sub> ||=||align=right| 5 |- |''E''<sub>6</sub> ||=||align=right| −61 |- |''E''<sub>8</sub> ||=||align=right| {{val|1385|fmt=gaps}} |- |''E''<sub>10</sub> ||=||align=right| {{val|−50521}} |- |''E''<sub>12</sub> ||=||align=right| {{val|2,702,765}} |- |''E''<sub>14</sub> ||=||align=right| {{val|−199,360,981}} |- |''E''<sub>16</sub> ||=||align=right| {{val|19,391,512,145}} |- |''E''<sub>18</sub> ||=||align=right| {{val|−2,404,879,675,441}} |} Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, or change all signs to positive {{OEIS|id=A000364}}. This article adheres to the convention adopted above. ==Explicit formulas == === In terms of Stirling numbers of the second kind === The following two formulas express the Euler numbers in terms of [[Stirling numbers of the second kind]]:<ref>{{cite journal | first1=Sumit Kumar | last1= Jha | title=A new explicit formula for Bernoulli numbers involving the Euler number | journal=Moscow Journal of Combinatorics and Number Theory | volume=8 | issue=4 | pages=385–387 | year=2019 | url= https://projecteuclid.org/euclid.moscow/1572314455| doi= 10.2140/moscow.2019.8.389 | s2cid= 209973489 }}</ref><ref>{{cite web |url=https://osf.io/smw7h/ |title=A new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind |last=Jha |first=Sumit Kumar |date= 15 November 2019}}</ref> :<math> E_{n}=2^{2n-1}\sum_{\ell=1}^{n}\frac{(-1)^{\ell}S(n,\ell)}{\ell+1}\left(3\left(\frac{1}{4}\right)^{\overline{\ell\phantom{.}}}-\left(\frac{3}{4}\right)^{\overline{\ell\phantom{.}}}\right), </math> :<math> E_{2n}=-4^{2n}\sum_{\ell=1}^{2n}(-1)^{\ell}\cdot \frac{S(2n,\ell)}{\ell+1}\cdot \left(\frac{3}{4}\right)^{\overline{\ell\phantom{.}}},</math> where <math> S(n,\ell) </math> denotes the [[Stirling numbers of the second kind]], and <math> x^{\overline{\ell\phantom{.}}}=(x)(x+1)\cdots (x+\ell-1) </math> denotes the [[Falling and rising factorials|rising factorial]]. === As a recursion === The Euler numbers can be defined as an recursion: <math>E_{2n}=-\sum_{{k=1}}^{n}\binom{2n}{2k}E_{2(n-k)},</math> or alternatively: <math>1=-\sum_{{k=1}}^{n}\binom{2n}{2k}E_{2k},</math> Both of these recursions can be found by using the fact that. <math>cos(x)sec(x)=1.</math> ===As a double sum=== The following two formulas express the Euler numbers as double sums<ref>{{cite journal | first1=Chun-Fu | last1= Wei | first2=Feng | last2=Qi | title=Several closed expressions for the Euler numbers | journal=Journal of Inequalities and Applications | volume=219 | issue=2015| year=2015 | doi= 10.1186/s13660-015-0738-9 | doi-access=free }} </ref> :<math>E_{2n}=(2 n+1)\sum_{\ell=1}^{2n} (-1)^{\ell}\frac{1}{2^{\ell}(\ell +1)}\binom{2 n}{\ell}\sum _{q=0}^{\ell}\binom{\ell}{q}(2q-\ell)^{2n}, </math> :<math>E_{2n}=\sum_{k=1}^{2n}(-1)^{k} \frac{1}{2^{k}}\sum_{\ell=0}^{2k}(-1)^{\ell } \binom{2k}{\ell}(k-\ell)^{2n}. </math> ===As an iterated sum=== An explicit formula for Euler numbers is:<ref>{{cite web |url=https://oeis.org/A000111/a000111.pdf |archive-url=https://web.archive.org/web/20140409060145/http://oeis.org/A000111/a000111.pdf |archive-date=2014-04-09 |url-status=live |title=An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series |last=Tang |first=Ross |date= 2012-05-11}} </ref> :<math>E_{2n}=i\sum _{k=1}^{2n+1} \sum _{\ell=0}^k \binom{k}{\ell}\frac{(-1)^\ell(k-2\ell)^{2n+1}}{2^k i^k k},</math> where {{mvar|i}} denotes the [[imaginary unit]] with {{math|''i''<sup>2</sup> {{=}} −1}}. ===As a sum over partitions=== The Euler number {{math|''E''<sub>2''n''</sub>}} can be expressed as a sum over the even [[Integer partition|partitions]] of {{math|2''n''}},<ref>{{cite journal | first1=David C. | last1= Vella | title=Explicit Formulas for Bernoulli and Euler Numbers | journal=Integers | volume=8 | issue=1 | pages=A1 | year=2008 | url= http://www.integers-ejcnt.org/vol8.html}}</ref> :<math> E_{2n} = (2n)! \sum_{0 \leq k_1, \ldots, k_n \leq n} \binom K {k_1, \ldots , k_n} \delta_{n,\sum mk_m} \left( -\frac{1}{2!} \right)^{k_1} \left( -\frac{1}{4!} \right)^{k_2} \cdots \left( -\frac{1}{(2n)!} \right)^{k_n} ,</math> as well as a sum over the odd partitions of {{math|2''n'' − 1}},<ref>{{cite arXiv | eprint=1103.1585 | first1= J. | last1=Malenfant | title=Finite, Closed-form Expressions for the Partition Function and for Euler, Bernoulli, and Stirling Numbers| class= math.NT | year= 2011 }}</ref> :<math> E_{2n} = (-1)^{n-1} (2n-1)! \sum_{0 \leq k_1, \ldots, k_n \leq 2n-1} \binom K {k_1, \ldots , k_n} \delta_{2n-1,\sum (2m-1)k_m } \left( -\frac{1}{1!} \right)^{k_1} \left( \frac{1}{3!} \right)^{k_2} \cdots \left( \frac{(-1)^n}{(2n-1)!} \right)^{k_n} , </math> where in both cases {{math|''K'' {{=}} ''k''<sub>1</sub> + ··· + ''k<sub>n</sub>''}} and :<math> \binom K {k_1, \ldots , k_n} \equiv \frac{ K!}{k_1! \cdots k_n!}</math> is a [[multinomial coefficient]]. The [[Kronecker delta]]s in the above formulas restrict the sums over the {{mvar|k}}s to {{math|2''k''<sub>1</sub> + 4''k''<sub>2</sub> + ··· + 2''nk<sub>n</sub>'' {{=}} 2''n''}} and to {{math|''k''<sub>1</sub> + 3''k''<sub>2</sub> + ··· + (2''n'' − 1)''k<sub>n</sub>'' {{=}} 2''n'' − 1}}, respectively. As an example, :<math> \begin{align} E_{10} & = 10! \left( - \frac{1}{10!} + \frac{2}{2!\,8!} + \frac{2}{4!\,6!} - \frac{3}{2!^2\, 6!}- \frac{3}{2!\,4!^2} +\frac{4}{2!^3\, 4!} - \frac{1}{2!^5}\right) \\[6pt] & = 9! \left( - \frac{1}{9!} + \frac{3}{1!^2\,7!} + \frac{6}{1!\,3!\,5!} +\frac{1}{3!^3}- \frac{5}{1!^4\,5!} -\frac{10}{1!^3\,3!^2} + \frac{7}{1!^6\, 3!} - \frac{1}{1!^9}\right) \\[6pt] & = -50\,521. \end{align} </math> ===As a determinant=== {{math|''E''<sub>2''n''</sub>}} is given by the [[determinant]] :<math> \begin{align} E_{2n} &=(-1)^n (2n)!~ \begin{vmatrix} \frac{1}{2!}& 1 &~& ~&~\\ \frac{1}{4!}& \frac{1}{2!} & 1 &~&~\\ \vdots & ~ & \ddots~~ &\ddots~~ & ~\\ \frac{1}{(2n-2)!}& \frac{1}{(2n-4)!}& ~&\frac{1}{2!} & 1\\ \frac{1}{(2n)!}&\frac{1}{(2n-2)!}& \cdots & \frac{1}{4!} & \frac{1}{2!}\end{vmatrix}. \end{align} </math> ===As an integral=== {{math|''E''<sub>2''n''</sub>}} is also given by the following integrals: :<math> \begin{align} (-1)^n E_{2n} & = \int_0^\infty \frac{t^{2n}}{\cosh\frac{\pi t}2}\; dt =\left(\frac2\pi\right)^{2n+1} \int_0^\infty \frac{x^{2n}}{\cosh x}\; dx\\[8pt] &=\left(\frac2\pi\right)^{2n} \int_0^1\log^{2n}\left(\tan \frac{\pi t}{4} \right)\,dt =\left(\frac2\pi\right)^{2n+1}\int_0^{\pi/2} \log^{2n}\left(\tan \frac{x}{2} \right)\,dx\\[8pt] &= \frac{2^{2n+3}}{\pi^{2n+2}} \int_0^{\pi/2} x \log^{2n} (\tan x)\,dx = \left(\frac2\pi\right)^{2n+2} \int_0^\pi \frac{x}{2} \log^{2n} \left(\tan \frac{x}{2} \right)\,dx.\end{align} </math> ==Congruences== W. Zhang<ref>{{cite journal | first1=W.P.| last1= Zhang | title=Some identities involving the Euler and the central factorial numbers | journal=Fibonacci Quarterly | volume=36 | issue=4 | pages=154–157 | year=1998 | doi= 10.1080/00150517.1998.12428950 | url= https://www.mathstat.dal.ca/FQ/Scanned/36-2/zhang.pdf |archive-url=https://web.archive.org/web/20191123004402/https://www.mathstat.dal.ca/FQ/Scanned/36-2/zhang.pdf |archive-date=2019-11-23 |url-status=live}}</ref> obtained the following combinational identities concerning the Euler numbers. For any prime <math> p </math>, we have :<math> (-1)^{\frac{p-1}{2}} E_{p-1} \equiv \textstyle\begin{cases} \phantom{-} 0 \mod p &\text{if }p\equiv 1\bmod 4; \\ -2 \mod p & \text{if }p\equiv 3\bmod 4. \end{cases} </math> W. Zhang and Z. Xu<ref>{{cite journal | first1=W.P. | last1= Zhang | first2= Z.F. | last2=Xu | title=On a conjecture of the Euler numbers | journal=Journal of Number Theory | volume=127 | issue=2| pages= 283–291 | year=2007 | doi= 10.1016/j.jnt.2007.04.004 | doi-access=free }} </ref> proved that, for any prime <math>p \equiv 1 \pmod{4}</math> and integer <math> \alpha\geq 1 </math>, we have :<math> E_{\phi(p^{\alpha})/2}\not \equiv 0 \pmod{p^{\alpha}}, </math> where <math>\phi(n)</math> is the [[Euler's totient function]]. ==Lower bound== The Euler numbers grow quite rapidly for large indices, as they have the lower bound : <math> |E_{2 n}| > 8 \sqrt { \frac{n}{\pi} } \left(\frac{4 n}{ \pi e}\right)^{2 n}. </math> ==Euler zigzag numbers== The [[Taylor series]] of <math>\sec x + \tan x = \tan\left(\frac\pi4 + \frac x2\right)</math> is :<math>\sum_{n=0}^{\infty} \frac{A_n}{n!}x^n,</math> where {{mvar|A<sub>n</sub>}} is the [[Alternating permutation|Euler zigzag numbers]], beginning with :1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, ... {{OEIS|id=A000111}} For all even {{mvar|n}}, :<math>A_n = (-1)^\frac{n}{2} E_n,</math> where {{mvar|''E<sub>n</sub>''}} is the Euler number, and for all odd {{mvar|n}}, :<math>A_n = (-1)^\frac{n-1}{2}\frac{2^{n+1}\left(2^{n+1}-1\right)B_{n+1}}{n+1},</math> where {{mvar|''B<sub>n</sub>''}} is the [[Bernoulli number]]. For every ''n'', :<math>\frac{A_{n-1}}{(n-1)!}\sin{\left(\frac{n\pi}{2}\right)}+\sum_{m=0}^{n-1}\frac{A_m}{m!(n-m-1)!}\sin{\left(\frac{m\pi}{2}\right)}=\frac{1}{(n-1)!}.</math>{{cn|date=September 2016}} ==See also== * [[Bell number]] * [[Bernoulli number]] * [[Dirichlet beta function]] * [[Euler–Mascheroni constant]] ==References== {{Reflist}} ==External links== * {{springer|title=Euler numbers|id=p/e036540}} * {{MathWorld|urlname=EulerNumber|title=Euler number}} {{Classes of natural numbers}} {{Leonhard Euler}} {{DEFAULTSORT:Euler Number}} [[Category:Eponymous numbers in mathematics]] [[Category:Integer sequences]] [[Category:Leonhard Euler]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite arXiv
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Cn
(
edit
)
Template:Confused
(
edit
)
Template:K=1
(
edit
)
Template:Leonhard Euler
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:OEIS
(
edit
)
Template:Other uses
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Use American English
(
edit
)
Template:Val
(
edit
)