Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler pseudoprime
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Odd composite number which passes the given congruence}} In [[mathematics]], an [[Odd number|odd]] [[composite number|composite]] [[integer]] ''n'' is called an '''Euler pseudoprime''' to base ''a'', if ''a'' and ''n'' are [[coprime]], and : <math>a^{(n-1)/2} \equiv \pm 1\pmod{n}</math> (where ''mod'' refers to the [[modular arithmetic|modulo]] operation). The motivation for this definition is the fact that all [[prime number]]s ''p'' satisfy the above equation which can be deduced from [[Fermat's little theorem]]. Fermat's theorem asserts that if ''p'' is prime, and coprime to ''a'', then ''a''<sup>''p''−1</sup> ≡ 1 (mod ''p''). Suppose that ''p''>2 is prime, then ''p'' can be expressed as 2''q'' + 1 where ''q'' is an integer. Thus, ''a''<sup>(2''q''+1) − 1</sup> ≡ 1 (mod ''p''), which means that ''a''<sup>2''q''</sup> − 1 ≡ 0 (mod ''p''). This can be factored as (''a''<sup>''q''</sup> − 1)(''a''<sup>''q''</sup> + 1) ≡ 0 (mod ''p''), which is equivalent to ''a''<sup>(''p''−1)/2</sup> ≡ ±1 (mod ''p''). The equation can be tested rather quickly, which can be used for probabilistic [[prime testing|primality testing]]. These tests are twice as strong as tests based on Fermat's little theorem. Every Euler [[pseudoprime]] is also a [[Fermat pseudoprime]]. It is not possible to produce a definite test of primality based on whether a [[number]] is an Euler pseudoprime because there exist ''absolute Euler pseudoprimes'', numbers which are Euler pseudoprimes to every base relatively prime to themselves. The absolute Euler pseudoprimes are a [[subset]] of the absolute Fermat pseudoprimes, or [[Carmichael number]]s, and the smallest absolute Euler pseudoprime is [[1729 (number)|1729]] = 7×13×19 {{OEIS|id=A033181}}. ==Relation to Euler–Jacobi pseudoprimes== {{main|Euler–Jacobi pseudoprime}} A slightly stronger test uses the [[Jacobi symbol]] to predict which of the two results will be found. The resultant [[Euler-Jacobi pseudoprime|Euler-Jacobi probable prime]] test verifies that : <math> a^{(n-1)/2} \equiv \left(\frac{a}{n}\right) \neq 0 \pmod n.</math> As with the basic Euler test, ''a'' and ''n'' are required to be comprime, but that test is included in the computation of the Jacobi symbol (''a''/''n''), whose value equals 0 if the values are ''not'' coprime. This slightly stronger test is called simply an Euler probable prime test by some authors. See, for example, page 115 of the book by Koblitz listed below, page 90 of the book by Riesel, or page 1003 of.<ref name="PSW">{{cite journal |author1 = Carl Pomerance |author-link1 = Carl Pomerance |author2 = John L. Selfridge |author-link2 = John L. Selfridge |author3 = Samuel S. Wagstaff, Jr. |author-link3 = Samuel S. Wagstaff, Jr. |title=The pseudoprimes to 25·10<sup>9</sup> |journal=Mathematics of Computation |date=July 1980 |volume=35 |issue=151 |pages=1003–1026 |url=//math.dartmouth.edu/~carlp/PDF/paper25.pdf |jstor=2006210 |doi=10.1090/S0025-5718-1980-0572872-7 |doi-access =free }}</ref> As an example of this test's increased strength, 341 is an Euler pseudoprime to the base 2, but not an Euler-Jacobi pseudoprime. Even more significantly, there are no absolute Euler–Jacobi pseudoprimes.{{r|PSW|p=1004}} A [[Strong pseudoprime|strong probable prime]] test is even stronger than the Euler-Jacobi test but takes the same computational effort. Because of this, prime-testing software is usually based on the strong test. ==Implementation in [[Lua (programming language)|Lua]]== '''function''' EulerTest(k) a = 2 '''if''' k == 1 '''then return false''' '''elseif''' k == 2 '''then return true''' '''else''' m = [[Modular exponentiation#Implementation in Lua|modPow(a,(k-1)/2,k)]] '''if''' (m == 1) or (m == k-1) '''then''' '''return true''' '''else''' '''return false''' '''end''' '''end''' '''end''' ==Examples== {|class="wikitable" !''n'' !Euler pseudoprimes to base ''n'' |- |1 |All odd composite numbers: 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, ... |- |2 |341, 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 5461, 6601, 8321, 8481, ... |- |3 |121, 703, 1541, 1729, 1891, 2465, 2821, 3281, 4961, 7381, 8401, 8911, ... |- |4 |341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, ... |- |5 |217, 781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, ... |- |6 |185, 217, 301, 481, 1111, 1261, 1333, 1729, 2465, 2701, 3421, 3565, 3589, 3913, 5713, 6533, 8365, ... |- |7 |25, 325, 703, 817, 1825, 2101, 2353, 2465, 3277, 4525, 6697, 8321, ... |- |8 |9, 21, 65, 105, 133, 273, 341, 481, 511, 561, 585, 1001, 1105, 1281, 1417, 1541, 1661, 1729, 1905, 2047, 2465, 2501, 3201, 3277, 3641, 4033, 4097, 4641, 4681, 4921, 5461, 6305, 6533, 6601, 7161, 8321, 8481, 9265, 9709, ... |- |9 |91, 121, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, ... |- |10 |9, 33, 91, 481, 657, 1233, 1729, 2821, 2981, 4187, 5461, 6533, 6541, 6601, 7777, 8149, 8401, ... |- |11 |133, 305, 481, 645, 793, 1729, 2047, 2257, 2465, 4577, 4921, 5041, 5185, 8113, ... |- |12 |65, 91, 133, 145, 247, 377, 385, 1649, 1729, 2041, 2233, 2465, 2821, 3553, 6305, 8911, 9073, ... |- |13 |21, 85, 105, 561, 1099, 1785, 2465, 5149, 5185, 7107, 8841, 8911, 9577, 9637, ... |- |14 |15, 65, 481, 781, 793, 841, 985, 1541, 2257, 2465, 2561, 2743, 3277, 5185, 5713, 6533, 6541, 7171, 7449, 7585, 8321, 9073, ... |- |15 |341, 1477, 1541, 1687, 1729, 1921, 3277, 6541, 9073, ... |- |16 |15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131, 9211, 9605, 9919, ... |- |17 |9, 91, 145, 781, 1111, 1305, 1729, 2149, 2821, 4033, 4187, 5365, 5833, 6697, 7171, ... |- |18 |25, 49, 65, 133, 325, 343, 425, 1105, 1225, 1369, 1387, 1729, 1921, 2149, 2465, 2977, 4577, 5725, 5833, 5941, 6305, 6517, 6601, 7345, ... |- |19 |9, 45, 49, 169, 343, 561, 889, 905, 1105, 1661, 1849, 2353, 2465, 2701, 3201, 4033, 4681, 5461, 5713, 6541, 6697, 7957, 8145, 8281, 8401, 9997, ... |- |20 |21, 57, 133, 671, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2761, 3201, 5461, 5473, 5713, 5833, 6601, 6817, 7999, ... |- |21 |65, 221, 703, 793, 1045, 1105, 2465, 3781, 5185, 5473, 6541, 7363, 8965, 9061, ... |- |22 |21, 69, 91, 105, 161, 169, 345, 485, 1183, 1247, 1541, 1729, 2041, 2047, 2413, 2465, 2821, 3241, 3801, 5551, 7665, 9453, ... |- |23 |33, 169, 265, 341, 385, 481, 553, 1065, 1271, 1729, 2321, 2465, 2701, 2821, 3097, 4033, 4081, 4345, 4371, 4681, 5149, 6533, 6541, 7189, 7957, 8321, 8651, 8745, 8911, 9805, ... |- |24 |25, 175, 553, 805, 949, 1541, 1729, 1825, 1975, 2413, 2465, 2701, 3781, 4537, 6931, 7501, 9085, 9361, ... |- |25 |217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5731, 6601, 7449, 7813, 8029, 8911, 9881, ... |- |26 |9, 25, 27, 45, 133, 217, 225, 475, 561, 589, 703, 925, 1065, 2465, 3325, 3385, 3565, 3825, 4741, 4921, 5041, 5425, 6697, 8029, 9073, ... |- |27 |65, 121, 133, 259, 341, 365, 481, 703, 1001, 1541, 1649, 1729, 1891, 2465, 2821, 2981, 2993, 3281, 4033, 4745, 4921, 4961, 5461, 6305, 6533, 7381, 7585, 8321, 8401, 8911, 9809, 9841, 9881, ... |- |28 |9, 27, 145, 261, 361, 529, 785, 1305, 1431, 2041, 2413, 2465, 3201, 3277, 4553, 4699, 5149, 7065, 8321, 8401, 9841, ... |- |29 |15, 21, 91, 105, 341, 469, 481, 793, 871, 1729, 1897, 2105, 2257, 2821, 4371, 4411, 5149, 5185, 5473, 5565, 6097, 7161, 8321, 8401, 8421, 8841, ... |- |30 |49, 133, 217, 341, 403, 469, 589, 637, 871, 901, 931, 1273, 1537, 1729, 2059, 2077, 2821, 3097, 3277, 4081, 4097, 5729, 6031, 6061, 6097, 6409, 6817, 7657, 8023, 8029, 8401, 9881, ... |} ==Least Euler pseudoprime to base ''n''== {|class="wikitable" |''n'' |Least EPSP |''n'' |Least EPSP |''n'' |Least EPSP |''n'' |Least EPSP |- |1 |9 |33 |545 |65 |33 |97 |21 |- |2 |341 |34 |21 |66 |65 |98 |9 |- |3 |121 |35 |9 |67 |33 |99 |25 |- |4 |341 |36 |35 |68 |25 |100 |9 |- |5 |217 |37 |9 |69 |35 |101 |25 |- |6 |185 |38 |39 |70 |69 |102 |133 |- |7 |25 |39 |133 |71 |9 |103 |51 |- |8 |9 |40 |39 |72 |85 |104 |15 |- |9 |91 |41 |21 |73 |9 |105 |451 |- |10 |9 |42 |451 |74 |15 |106 |15 |- |11 |133 |43 |21 |75 |91 |107 |9 |- |12 |65 |44 |9 |76 |15 |108 |91 |- |13 |21 |45 |133 |77 |39 |109 |9 |- |14 |15 |46 |9 |78 |77 |110 |111 |- |15 |341 |47 |65 |79 |39 |111 |55 |- |16 |15 |48 |49 |80 |9 |112 |65 |- |17 |9 |49 |25 |81 |91 |113 |21 |- |18 |25 |50 |21 |82 |9 |114 |115 |- |19 |9 |51 |25 |83 |21 |115 |57 |- |20 |21 |52 |51 |84 |85 |116 |9 |- |21 |65 |53 |9 |85 |21 |117 |49 |- |22 |21 |54 |55 |86 |65 |118 |9 |- |23 |33 |55 |9 |87 |133 |119 |15 |- |24 |25 |56 |33 |88 |87 |120 |77 |- |25 |217 |57 |25 |89 |9 |121 |15 |- |26 |9 |58 |57 |90 |91 |122 |33 |- |27 |65 |59 |15 |91 |9 |123 |85 |- |28 |9 |60 |341 |92 |21 |124 |25 |- |29 |15 |61 |15 |93 |25 |125 |9 |- |30 |49 |62 |9 |94 |57 |126 |25 |- |31 |15 |63 |341 |95 |141 |127 |9 |- |32 |25 |64 |9 |96 |65 |128 |49 |} ==See also== * [[Probable prime]] ==References== {{reflist}} *M. Koblitz, "A Course in Number Theory and Cryptography", Springer-Verlag, 1987. *H. Riesel, "Prime numbers and computer methods of factorisation", Birkhäuser, Boston, Mass., 1985. {{Classes of natural numbers}} {{DEFAULTSORT:Euler Pseudoprime}} [[Category:Pseudoprimes]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Main
(
edit
)
Template:OEIS
(
edit
)
Template:R
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)