Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponential hierarchy
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[computational complexity theory]], the '''exponential hierarchy''' is a hierarchy of [[complexity class]]es that is an [[EXPTIME|exponential time]] analogue of the [[polynomial hierarchy]]. As elsewhere in complexity theory, βexponentialβ is used in two different meanings (linear exponential bounds <math>2^{cn}</math> for a constant ''c'', and full exponential bounds <math>2^{n^c}</math>), leading to two versions of the exponential hierarchy.<ref>Sarah Mocas, Separating classes in the exponential-time hierarchy from classes in ''PH'', [[Theoretical Computer Science (journal)|Theoretical Computer Science]] 158 (1996), no. 1β2, pp. 221β231.</ref><ref name=":0">Anuj Dawar, Georg Gottlob, Lauri Hella, Capturing relativized complexity classes without order, Mathematical Logic Quarterly 44 (1998), no. 1, pp. 109β122.</ref> This hierarchy is sometimes also referred to as the ''weak'' exponential hierarchy, to differentiate it from the ''strong'' exponential hierarchy.<ref name=":0" /><ref>{{Cite journal|last=Hemachandra|first=Lane A.|date=1989|title=The strong exponential hierarchy collapses|url=|journal=[[Journal of Computer and System Sciences]]|language=en|volume=39|issue=3|pages=299β322|doi=10.1016/0022-0000(89)90025-1}}</ref> ==EH== The complexity class EH is the union of the classes <math>\Sigma^\mathsf{E}_k</math> for all ''k'', where <math>\Sigma^\mathsf{E}_k=\mathsf{NE}^{\Sigma^\mathsf{P}_{k-1}}</math> (i.e., languages computable in [[nondeterministic Turing machine|nondeterministic]] time <math>2^{cn}</math> for some constant ''c'' with a <math>\Sigma^\mathsf{P}_{k-1}</math> [[oracle Turing machine|oracle]]) and <math>\Sigma^\mathsf{E}_0 = \mathsf{E}</math>. One also defines :<math>\Pi^\mathsf{E}_k=\mathsf{coNE}^{\Sigma^\mathsf{P}_{k-1}}</math> and <math>\Delta^\mathsf{E}_k=\mathsf{E}^{\Sigma^\mathsf{P}_{k-1}}.</math> An equivalent definition is that a language ''L'' is in <math>\Sigma^\mathsf{E}_k</math> if and only if it can be written in the form :<math>x\in L\iff\exists y_1\forall y_2\dots Qy_k R(x,y_1,\ldots,y_k),</math> where <math>R(x,y_1,\ldots,y_n)</math> is a predicate computable in time <math>2^{c|x|}</math> (which implicitly bounds the length of ''y<sub>i</sub>''). Also equivalently, EH is the class of languages computable on an [[alternating Turing machine]] in time <math>2^{cn}</math> for some ''c'' with constantly many alternations. ==EXPH== EXPH is the union of the classes <math>\Sigma^{\mathsf{EXP}}_k</math>, where <math>\Sigma^{\mathsf{EXP}}_k=\mathsf{NEXP}^{\Sigma^\mathsf{P}_{k-1}}</math> (languages computable in nondeterministic time <math>2^{n^c}</math> for some constant ''c'' with a <math>\Sigma^\mathsf{P}_{k-1}</math> oracle), <math>\Sigma^{\mathsf{EXP}}_0 = \mathsf{EXP}</math>, and again: :<math>\Pi^{\mathsf{EXP}}_k=\mathsf{coNEXP}^{\Sigma^\mathsf{P}_{k-1}}, \Delta^{\mathsf{EXP}}_k=\mathsf{EXP}^{\Sigma^\mathsf{P}_{k-1}}.</math> A language ''L'' is in <math>\Sigma^{\mathsf{EXP}}_k</math> if and only if it can be written as :<math>x\in L\iff\exists y_1 \forall y_2 \dots Qy_k R(x,y_1,\ldots,y_k),</math> where <math>R(x,y_1,\ldots,y_k)</math> is computable in time <math>2^{|x|^c}</math> for some ''c'', which again implicitly bounds the length of ''y<sub>i</sub>''. Equivalently, EXPH is the class of languages computable in time <math>2^{n^c}</math> on an alternating Turing machine with constantly many alternations. ==Comparison== {{Unreferenced section|date=September 2024}} :[[E (complexity)|E]] β [[NE (complexity)|NE]] β EHβ [[ESPACE]], :[[EXPTIME|EXP]] β [[NEXPTIME|NEXP]] β EXPHβ [[EXPSPACE]], :EH β EXPH. == References == {{reflist}} ==External links== {{CZoo|Class EH|E#eh}} {{ComplexityClasses}} {{DEFAULTSORT:Exponential Hierarchy}} [[Category:Complexity classes]] [[Category:Mathematical logic hierarchies]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:CZoo
(
edit
)
Template:Cite journal
(
edit
)
Template:ComplexityClasses
(
edit
)
Template:Reflist
(
edit
)
Template:Unreferenced section
(
edit
)