Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponential integral
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Special function defined by an integral}} {{distinguish|text=[[List of integrals of exponential functions|other integrals]] of [[exponential function]]s}} {{Use American English|date = January 2019}} [[File:Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]]In mathematics, the '''exponential integral''' Ei is a [[special function]] on the [[complex plane]]. It is defined as one particular [[definite integral]] of the ratio between an [[exponential function]] and its [[argument of a function|argument]]. ==Definitions== For real non-zero values of ''x'', the exponential integral Ei(''x'') is defined as :<math> \operatorname{Ei}(x) = -\int_{-x}^\infty \frac{e^{-t}}t\,dt = \int_{-\infty}^x \frac{e^t}t\,dt.</math> The [[Risch algorithm]] shows that Ei is not an [[elementary function]]. The definition above can be used for positive values of ''x'', but the integral has to be understood in terms of the [[Cauchy principal value]] due to the singularity of the integrand at zero. For complex values of the argument, the definition becomes ambiguous due to [[branch points]] at 0 and {{nowrap|<math>\infty</math>.}}<ref>Abramowitz and Stegun, p. 228</ref> Instead of Ei, the following notation is used,<ref>Abramowitz and Stegun, p. 228, 5.1.1</ref> :<math>E_1(z) = \int_z^\infty \frac{e^{-t}}{t}\, dt,\qquad|{\rm Arg}(z)|<\pi</math>[[File:Plot of the exponential integral function Ei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the exponential integral function Ei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D|thumb|Plot of the exponential integral function Ei(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D]] For positive values of ''x'', we have {{nowrap|<math>-E_1(x) = \operatorname{Ei}(-x)</math>.}} In general, a [[branch cut]] is taken on the negative real axis and ''E''<sub>1</sub> can be defined by [[analytic continuation]] elsewhere on the complex plane. For positive values of the real part of <math>z</math>, this can be written<ref>Abramowitz and Stegun, p. 228, 5.1.4 with ''n'' = 1</ref> :<math>E_1(z) = \int_1^\infty \frac{e^{-tz}}{t}\, dt = \int_0^1 \frac{e^{-z/u}}{u}\, du ,\qquad \Re(z) \ge 0.</math> The behaviour of ''E''<sub>1</sub> near the branch cut can be seen by the following relation:<ref>Abramowitz and Stegun, p. 228, 5.1.7</ref> :<math>\lim_{\delta\to0+} E_1(-x \pm i\delta) = -\operatorname{Ei}(x) \mp i\pi,\qquad x>0.</math> ==Properties== Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition above. ===Convergent series=== [[Image:Exponential integral.svg|300px|right|thumb| Plot of <math>E_1</math> function (top) and <math>\operatorname{Ei}</math> function (bottom).]] For real or complex arguments off the negative real axis, <math>E_1(z)</math> can be expressed as<ref>Abramowitz and Stegun, p. 229, 5.1.11</ref> :<math>E_1(z) = -\gamma - \ln z - \sum_{k=1}^{\infty} \frac{(-z)^k}{k\; k!} \qquad (\left| \operatorname{Arg}(z) \right| < \pi)</math> where <math>\gamma</math> is the [[Euler–Mascheroni constant]]. The sum converges for all complex <math>z</math>, and we take the usual value of the [[complex logarithm]] having a [[branch cut]] along the negative real axis. This formula can be used to compute <math>E_1(x)</math> with floating point operations for real <math>x</math> between 0 and 2.5. For <math>x > 2.5</math>, the result is inaccurate due to [[Catastrophic cancellation|cancellation]]. A faster converging series was found by [[Ramanujan]]:<ref>Andrews and Berndt, p. 130, 24.16</ref> :<math>{\rm Ei} (x) = \gamma + \ln x + \exp{(x/2)} \sum_{n=1}^\infty \frac{ (-1)^{n-1} x^n} {n! \, 2^{n-1}} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{2k+1}</math> ===Asymptotic (divergent) series=== [[Image:AsymptoticExpansionE1.png|right|200px|thumb| Relative error of the asymptotic approximation for different number <math>~N~</math> of terms in the truncated sum]] Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, more than 40 terms are required to get an answer correct to three significant figures for <math>E_1(10)</math>.<ref>Bleistein and Handelsman, p. 2</ref> However, for positive values of x, there is a divergent series approximation that can be obtained by integrating <math>x e^x E_1(x)</math> by parts:<ref>Bleistein and Handelsman, p. 3</ref> : <math>E_1(x)=\frac{\exp(-x)} x \left(\sum_{n=0}^{N-1} \frac{n!}{(-x)^n} +O(N!x^{-N}) \right)</math> The relative error of the approximation above is plotted on the figure to the right for various values of <math>N</math>, the number of terms in the truncated sum (<math>N=1</math> in red, <math>N=5</math> in pink). ==== Asymptotics beyond all orders ==== Using integration by parts, we can obtain an explicit formula<ref>{{Citation |last=O’Malley |first=Robert E. |title=Asymptotic Approximations |date=2014 |url=https://doi.org/10.1007/978-3-319-11924-3_2 |work=Historical Developments in Singular Perturbations |pages=27–51 |editor-last=O'Malley |editor-first=Robert E. |access-date=2023-05-04 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-319-11924-3_2 |isbn=978-3-319-11924-3|url-access=subscription }}</ref><math display="block">\operatorname{Ei}(z) = \frac{e^{z}} {z} \left (\sum _{k=0}^{n} \frac{k!} {z^{k}} + e_{n}(z)\right), \quad e_{n}(z) \equiv (n + 1)!\ ze^{-z}\int _{ -\infty }^{z} \frac{e^{t}} {t^{n+2}}\,dt</math>For any fixed <math>z</math>, the absolute value of the error term <math>|e_n(z)|</math> decreases, then increases. The minimum occurs at <math>n\sim |z|</math>, at which point <math>\vert e_{n}(z)\vert \leq \sqrt{\frac{2\pi } {\vert z\vert }}e^{-\vert z\vert }</math>. This bound is said to be "asymptotics beyond all orders". ===Exponential and logarithmic behavior: bracketing=== [[Image:BracketingE1.png|right|200px|thumb|Bracketing of <math>E_1</math> by elementary functions]] From the two series suggested in previous subsections, it follows that <math>E_1</math> behaves like a negative exponential for large values of the argument and like a logarithm for small values. For positive real values of the argument, <math>E_1</math> can be bracketed by elementary functions as follows:<ref>Abramowitz and Stegun, p. 229, 5.1.20</ref> :<math> \frac 1 2 e^{-x}\,\ln\!\left( 1+\frac 2 x \right) < E_1(x) < e^{-x}\,\ln\!\left( 1+\frac 1 x \right) \qquad x>0 </math> The left-hand side of this inequality is shown in the graph to the left in blue; the central part <math>E_1(x)</math> is shown in black and the right-hand side is shown in red. ===Definition by Ein=== Both <math>\operatorname{Ei}</math> and <math>E_1</math> can be written more simply using the [[entire function]] <math>\operatorname{Ein}</math><ref>Abramowitz and Stegun, p. 228, see footnote 3.</ref> defined as :<math> \operatorname{Ein}(z) = \int_0^z (1-e^{-t})\frac{dt}{t} = \sum_{k=1}^\infty \frac{(-1)^{k+1}z^k}{k\; k!} </math> (note that this is just the alternating series in the above definition of <math>E_1</math>). Then we have :<math> E_1(z) \,=\, -\gamma-\ln z + {\rm Ein}(z) \qquad \left| \operatorname{Arg}(z) \right| < \pi </math> :<math>\operatorname{Ei}(x) \,=\, \gamma+\ln{x} - \operatorname{Ein}(-x) \qquad x \neq 0 </math> The function <math>\operatorname{Ein}</math> is related to the exponential generating function of the [[harmonic numbers]]: :<math> \operatorname{Ein}(z) = e^{-z} \, \sum_{n=1}^\infty \frac {z^n}{n!} H_n </math> ===Relation with other functions=== Kummer's equation :<math>z\frac{d^2w}{dz^2} + (b-z)\frac{dw}{dz} - aw = 0</math> is usually solved by the [[confluent hypergeometric functions]] <math>M(a,b,z)</math> and <math>U(a,b,z).</math> But when <math>a=0</math> and <math>b=1,</math> that is, :<math>z\frac{d^2w}{dz^2} + (1-z)\frac{dw}{dz} = 0</math> we have :<math>M(0,1,z)=U(0,1,z)=1</math> for all ''z''. A second solution is then given by E<sub>1</sub>(−''z''). In fact, :<math>E_1(-z)=-\gamma-i\pi+\frac{\partial[U(a,1,z)-M(a,1,z)]}{\partial a},\qquad 0<{\rm Arg}(z)<2\pi</math> with the derivative evaluated at <math>a=0.</math> Another connexion with the confluent hypergeometric functions is that ''E<sub>1</sub>'' is an exponential times the function ''U''(1,1,''z''): :<math>E_1(z)=e^{-z}U(1,1,z)</math> The exponential integral is closely related to the [[logarithmic integral function]] li(''x'') by the formula :<math>\operatorname{li}(e^x) = \operatorname{Ei}(x)</math> for non-zero real values of <math>x </math>. ===Generalization=== The exponential integral may also be generalized to :<math>E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n}\, dt,</math> which can be written as a special case of the upper [[incomplete gamma function]]:<ref>Abramowitz and Stegun, p. 230, 5.1.45</ref> : <math>E_n(x) =x^{n-1}\Gamma(1-n,x).</math> The generalized form is sometimes called the Misra function<ref>After Misra (1940), p. 178</ref> <math>\varphi_m(x)</math>, defined as :<math>\varphi_m(x)=E_{-m}(x).</math> Many properties of this generalized form can be found in the [https://dlmf.nist.gov/8.19 NIST Digital Library of Mathematical Functions.] Including a logarithm defines the generalized integro-exponential function<ref>Milgram (1985)</ref> :<math>E_s^j(z)= \frac{1}{\Gamma(j+1)}\int_1^\infty \left(\log t\right)^j \frac{e^{-zt}}{t^s}\,dt.</math> ===Derivatives=== The derivatives of the generalised functions <math>E_n</math> can be calculated by means of the formula <ref>Abramowitz and Stegun, p. 230, 5.1.26</ref> :<math> E_n '(z) = - E_{n-1}(z) \qquad (n=1,2,3,\ldots) </math> Note that the function <math>E_0</math> is easy to evaluate (making this recursion useful), since it is just <math>e^{-z}/z</math>.<ref>Abramowitz and Stegun, p. 229, 5.1.24</ref> ===Exponential integral of imaginary argument=== [[Image:E1ofImaginaryArgument.png|right|200px|thumb|<math>E_1(ix)</math> against <math>x</math>; real part black, imaginary part red.]] If <math>z</math> is imaginary, it has a nonnegative real part, so we can use the formula :<math> E_1(z) = \int_1^\infty \frac{e^{-tz}} t \, dt </math> to get a relation with the [[trigonometric integral]]s <math>\operatorname{Si}</math> and <math>\operatorname{Ci}</math>: :<math> E_1(ix) = i\left[ -\tfrac{1}{2}\pi + \operatorname{Si}(x)\right] - \operatorname{Ci}(x) \qquad (x > 0) </math> The real and imaginary parts of <math>\mathrm{E}_1(ix)</math> are plotted in the figure to the right with black and red curves. === Approximations === There have been a number of approximations for the exponential integral function. These include: * The Swamee and Ohija approximation<ref name=":0">{{Cite journal|title = Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution|journal = Ground Water|date = 2003-05-01|issn = 1745-6584|pages = 387–390|volume = 41| issue = 3|doi = 10.1111/j.1745-6584.2003.tb02608.x|first = Pham Huy|last = Giao| pmid=12772832 | bibcode=2003GrWat..41..387G | s2cid=31982931 }}</ref> <math display="block">E_1(x) = \left (A^{-7.7}+B \right )^{-0.13},</math> where <math display="block">\begin{align} A &= \ln\left [\left (\frac{0.56146}{x}+0.65\right)(1+x)\right] \\ B &= x^4e^{7.7x}(2+x)^{3.7} \end{align}</math> * The Allen and Hastings approximation <ref name=":0" /><ref name=":1">{{Cite journal|title = Numerical evaluation of exponential integral: Theis well function approximation|journal = Journal of Hydrology|date = 1998-02-26|pages = 38–51|volume = 205|issue = 1–2|doi = 10.1016/S0022-1694(97)00134-0|first1 = Peng-Hsiang|last1 = Tseng|first2 = Tien-Chang|last2 = Lee|bibcode = 1998JHyd..205...38T }}</ref> <math display="block">E_1(x) = \begin{cases} - \ln x +\textbf{a}^T\textbf{x}_5,&x\leq1 \\ \frac{e^{-x}} x \frac{\textbf{b}^T \textbf{x}_3}{\textbf{c}^T\textbf{x}_3},&x\geq1 \end{cases}</math> where <math display="block">\begin{align} \textbf{a} & \triangleq [-0.57722, 0.99999, -0.24991, 0.05519, -0.00976, 0.00108]^T \\ \textbf{b} & \triangleq[0.26777,8.63476, 18.05902, 8.57333]^T \\ \textbf{c} & \triangleq[3.95850, 21.09965, 25.63296, 9.57332]^T \\ \textbf{x}_k &\triangleq[x^0,x^1,\dots, x^k]^T \end{align}</math> * The continued fraction expansion <ref name=":1" /> <math display="block">E_1(x) = \cfrac{e^{-x}}{x+\cfrac{1}{1+\cfrac{1}{x+\cfrac{2}{1+\cfrac{2}{x+\cfrac{3}{\ddots}}}}}}.</math> * The approximation of Barry ''et al.'' <ref>{{Cite journal|title = Approximation for the exponential integral (Theis well function) |journal = Journal of Hydrology|date = 2000-01-31| pages = 287–291|volume = 227|issue = 1–4|doi = 10.1016/S0022-1694(99)00184-5|first1 = D. A|last1 = Barry|first2 = J. -Y|last2 = Parlange |first3 = L|last3 = Li|bibcode = 2000JHyd..227..287B }}</ref> <math display="block">E_1(x) = \frac{e^{-x}}{G+(1-G)e^{-\frac{x}{1-G}}}\ln\left[1+\frac G x -\frac{1-G}{(h+bx)^2}\right],</math> where: <math display="block">\begin{align} h &= \frac{1}{1+x\sqrt{x}}+\frac{h_{\infty}q}{1+q} \\ q &=\frac{20}{47}x^{\sqrt{\frac{31}{26}}} \\ h_{\infty} &= \frac{(1-G)(G^2-6G+12)}{3G(2-G)^2b} \\ b &=\sqrt{\frac{2(1-G)}{G(2-G)}} \\ G &= e^{-\gamma} \end{align}</math> with <math>\gamma</math> being the [[Euler–Mascheroni constant]]. == Inverse function of the Exponential Integral == We can express the [[Inverse function]] of the exponential integral in [[power series]] form:<ref>{{Cite web |title=Inverse function of the Exponential Integral {{math|Ei{{sup|-1}}(''x'')}} |url=https://math.stackexchange.com/questions/4901881/inverse-function-of-the-exponential-integral-mathrmei-1x |access-date=2024-04-24 |website=Mathematics Stack Exchange |language=}}</ref> : <math>\forall |x| < \frac{\mu}{\ln(\mu)},\quad \mathrm{Ei}^{-1}(x) = \sum_{n=0}^\infty \frac{x^n}{n!} \frac{P_n(\ln(\mu))}{\mu^n}</math> where <math>\mu</math> is the [[Ramanujan–Soldner constant]] and <math>(P_n)</math> is [[polynomial]] sequence defined by the following [[recurrence relation]]: : <math>P_0(x) = x,\ P_{n+1}(x) = x(P_n'(x) - nP_n(x)).</math> For <math>n > 0</math>, <math>\deg P_n = n</math> and we have the formula : : <math>P_n(x) = \left.\left(\frac{\mathrm d}{\mathrm dt}\right)^{n-1} \left(\frac{te^x}{\mathrm{Ei}(t+x)-\mathrm{Ei}(x)}\right)^n\right|_{t=0}.</math> == Applications == * Time-dependent [[heat transfer]] * Nonequilibrium [[groundwater]] flow in the [[Aquifer test#Transient Theis solution|Theis solution]] (called a ''well function'') * Radiative transfer in stellar and planetary atmospheres * Radial diffusivity equation for transient or unsteady state flow with line sources and sinks * Solutions to the [[neutron transport]] equation in simplified 1-D geometries<ref>{{cite book|title=Nuclear Reactor Theory|year=1970|publisher=Van Nostrand Reinhold Company|author=George I. Bell|author2=Samuel Glasstone}}</ref> * Solutions to the [[Trachenko-Zaccone]] [[List of nonlinear ordinary differential equations|nonlinear differential equation]] for the [[stretched exponential function]] in the relaxation of [[amorphous solids]] and [[glass transition]]<ref>{{Cite journal |last1=Trachenko |first1=K. |last2=Zaccone |first2=A.|date=2021-06-14 |title=Slow stretched-exponential and fast compressed-exponential relaxation from local event dynamics |url=https://iopscience.iop.org/article/10.1088/1361-648X/ac04cd |journal=Journal of Physics: Condensed Matter |language=en |volume=33 |issue= |pages=315101 |doi= 10.1088/1361-648X/ac04cd|bibcode= |issn=0953-8984|arxiv=2010.10440 }}</ref><ref>{{Cite journal |last1=Ginzburg |first1=V. V.| last2=Gendelman | first2= O. V.| last3=Zaccone |first3=A.|date=2024-02-23 |title=Unifying Physical Framework for Stretched-Exponential, Compressed-Exponential, and Logarithmic Relaxation Phenomena in Glassy Polymers|url=https://pubs.acs.org/doi/full/10.1021/acs.macromol.3c02480 |journal=Macromolecules |language=en |volume=57 |issue= 5|pages=2520–2529 |doi= 10.1021/acs.macromol.3c02480|bibcode= |issn=0024-9297|arxiv=2311.09321 }}</ref> ==See also== * [[Goodwin–Staton integral]] * [[Bickley–Naylor functions]] ==Notes== {{reflist|2}} ==References== * {{cite book |last = Abramowitz |first = Milton |others = [[Abramowitz and Stegun]] |author2 = Irene Stegun |title = Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables |publisher = Dover |year = 1964 |location = New York |url = https://archive.org/details/handbookofmathe000abra |isbn = 978-0-486-61272-0 |url-access = registration }}, [http://people.math.sfu.ca/~cbm/aands/page_228.htm Chapter 5]. * {{cite book | last = Bender | first = Carl M. |author2=Steven A. Orszag | title = Advanced mathematical methods for scientists and engineers | publisher = McGraw–Hill | year = 1978 | isbn = 978-0-07-004452-4 }} * {{cite book | last = Bleistein | first = Norman |author2=Richard A. Handelsman | title = Asymptotic Expansions of Integrals | publisher = Dover | year = 1986 | isbn = 978-0-486-65082-1 }} * {{Citation | last1=Andrews | first1=George E. | last2=Berndt | first2=Bruce C. | title=Ramanujan's lost notebook. Part IV | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-1-4614-4080-2 | year=2013}} * {{cite journal |doi=10.1093/qmath/1.1.176 |first=Ida W. |last=Busbridge |journal=Quart. J. Math. (Oxford) |year=1950 |volume=1 |issue=1 |title=On the integro-exponential function and the evaluation of some integrals involving it |pages=176–184 |bibcode=1950QJMat...1..176B }} * {{cite journal |first1=A. |last1=Stankiewicz |title=Tables of the integro-exponential functions |journal=Acta Astronomica |volume=18 |page=289 |year=1968 |bibcode=1968AcA....18..289S }} * {{cite journal |first1=R. R. |last1=Sharma |first2=Bahman |last2=Zohuri |title=A general method for an accurate evaluation of exponential integrals E<sub>1</sub>(x), x>0 |journal=J. Comput. Phys. |volume=25 |number=2 |pages=199–204 |doi=10.1016/0021-9991(77)90022-5 |year=1977 |bibcode=1977JCoPh..25..199S }} * {{cite journal |doi=10.1090/S0025-5718-1983-0701632-1 |first1=K. S. |last1=Kölbig |title=On the integral exp(−''μt'')''t''<sup>ν−1</sup>log<sup>''m''</sup>''t'' ''dt'' |journal=Math. Comput. |year=1983 |pages=171–182 |volume=41 |number=163 |doi-access=free }} * {{cite journal |doi=10.1090/S0025-5718-1985-0777276-4 |first=M. S. |last=Milgram |journal=Mathematics of Computation |title=The generalized integro-exponential function |volume=44 |issue=170 |year=1985 |mr=0777276 |pages=443–458 |jstor = 2007964 |doi-access=free }} * {{cite journal | last1 = Misra | first1 = Rama Dhar | year = 1940 | title = On the Stability of Crystal Lattices. II | journal = [[Mathematical Proceedings of the Cambridge Philosophical Society]] | volume = 36 | issue = 2 | pages = 173 | doi = 10.1017/S030500410001714X | last2 = Born | first2 = M. |bibcode = 1940PCPS...36..173M | s2cid = 251097063 }} * {{cite journal |first1=C. |last1=Chiccoli |first2=S. |last2=Lorenzutta |first3=G. |last3=Maino |title=On the evaluation of generalized exponential integrals E<sub>ν</sub>(x) |journal=J. Comput. Phys. |volume=78 |issue=2 |pages=278–287 |year=1988 |doi=10.1016/0021-9991(88)90050-2 |bibcode=1988JCoPh..78..278C }} * {{cite journal |first1=C. |last1=Chiccoli |first2=S. |last2=Lorenzutta |first3=G. |last3=Maino |title=Recent results for generalized exponential integrals |journal=Computer Math. Applic. |volume=19 |number=5 |pages=21–29 |year=1990 |doi=10.1016/0898-1221(90)90098-5 |url=https://www.openaccessrepository.it/record/135675 |archive-url=https://web.archive.org/web/20241211053950/https://www.openaccessrepository.it/record/135675 |url-status=dead |archive-date=December 11, 2024 |doi-access= |url-access=subscription }} * {{cite journal |first1=Allan J. |last1=MacLeod |title=The efficient computation of some generalised exponential integrals |journal=J. Comput. Appl. Math. |doi=10.1016/S0377-0427(02)00556-3 |year=2002 |volume=148 |number=2 |pages=363–374 |bibcode=2002JCoAM.148..363M |doi-access=free }} * {{Citation | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | location=New York | isbn=978-0-521-88068-8 | chapter=Section 6.3. Exponential Integrals | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=266 | access-date=2011-08-09 | archive-date=2011-08-11 | archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=266 | url-status=dead }} *{{dlmf|id=6|title=Exponential, Logarithmic, Sine, and Cosine Integrals|first=N. M. |last=Temme}} == External links == * {{springer|title=Integral exponential function|id=p/i051440}} * [http://dlmf.nist.gov/8.19 NIST documentation on the Generalized Exponential Integral] *{{MathWorld|urlname=ExponentialIntegral|title=Exponential Integral}} *{{MathWorld|urlname=En-Function|title=''En''-Function}} * {{WolframFunctionsSite | urlname=GammaBetaErf/ExpIntegralEi/ | title= Exponential integral Ei}} * [http://dlmf.nist.gov/6 Exponential, Logarithmic, Sine, and Cosine Integrals] in [[DLMF]]. <!-- {{DLMF}} is not for external links. ;-/ --> {{Nonelementary Integral}} {{DEFAULTSORT:Exponential Integral}} [[Category:Exponentials]] [[Category:Special functions]] [[Category:Special hypergeometric functions]] [[Category:Integrals]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Distinguish
(
edit
)
Template:Dlmf
(
edit
)
Template:MathWorld
(
edit
)
Template:Nonelementary Integral
(
edit
)
Template:Nowrap
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Use American English
(
edit
)
Template:WolframFunctionsSite
(
edit
)