Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exterior covariant derivative
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{see also|Second covariant derivative}} In the [[mathematics|mathematical]] field of [[differential geometry]], the '''exterior covariant derivative''' is an extension of the notion of [[exterior derivative]] to the setting of a differentiable [[principal bundle]] or [[vector bundle]] with a [[Connection (principal bundle)|connection]]. ==Definition== Let ''G'' be a [[Lie group]] and {{nowrap|''P'' → ''M''}} be a [[principal bundle|principal ''G''-bundle]] on a [[smooth manifold]] ''M''. Suppose there is a [[connection (principal bundle)|connection]] on ''P''; this yields a natural direct sum decomposition <math>T_u P = H_u \oplus V_u</math> of each tangent space into the [[horizontal subspace|horizontal]] and [[vertical subspace|vertical]] subspaces. Let <math>h: T_u P \to H_u</math> be the projection to the horizontal subspace. If ''ϕ'' is a [[vector-valued form|''k''-form]] on ''P'' with values in a vector space ''V'', then its exterior covariant derivative ''Dϕ'' is a form defined by :<math>D\phi(v_0, v_1,\dots, v_k)= d \phi(h v_0 ,h v_1,\dots, h v_k)</math> where ''v''<sub>''i''</sub> are tangent vectors to ''P'' at ''u''. Suppose that {{nowrap|''ρ'' : ''G'' → GL(''V'')}} is a [[representation of a Lie group|representation]] of ''G'' on a vector space ''V''. If ''ϕ'' is [[equivariant]] in the sense that :<math>R_g^* \phi = \rho(g)^{-1}\phi</math> where <math>R_g(u) = ug</math>, then ''Dϕ'' is a [[tensorial form|tensorial {{nowrap|(''k'' + 1)}}-form]] on ''P'' of the type ''ρ'': it is equivariant and horizontal (a form ''ψ'' is horizontal if {{nowrap|1=''ψ''(''v''<sub>0</sub>, ..., ''v''<sub>k</sub>) = ''ψ''(''hv''<sub>0</sub>, ..., ''hv''<sub>''k''</sub>)}}.) By [[abuse of notation]], the differential of ''ρ'' at the identity element may again be denoted by ''ρ'': :<math>\rho: \mathfrak{g} \to \mathfrak{gl}(V).</math> Let <math>\omega</math> be the [[connection one-form]] and <math>\rho(\omega)</math> the representation of the connection in <math>\mathfrak{gl}(V).</math> That is, <math>\rho(\omega)</math> is a [[Lie algebra-valued differential form#operations|<math>\mathfrak{gl}(V)</math>-valued form]], vanishing on the horizontal subspace. If ''ϕ'' is a tensorial ''k''-form of type ''ρ'', then :<math>D \phi = d \phi + \rho(\omega) \cdot \phi,</math><ref>If {{nowrap|1=''k'' = 0}}, then, writing <math>X^{\#}</math> for the [[fundamental vector field]] (i.e., vertical vector field) generated by ''X'' in <math>\mathfrak{g}</math> on ''P'', we have: :<math>d \phi(X^{\#}_u) = \left . {d \over dt}\right\vert_0 \phi(u \operatorname{exp}(tX)) = -\rho(X)\phi(u) = -\rho(\omega(X^{\#}_u))\phi(u)</math>, since {{nowrap|1=''ϕ''(''gu'') = ''ρ''(''g''<sup>−1</sup>)''ϕ''(''u'')}}. On the other hand, {{nowrap|1=''Dϕ''(''X''<sup>#</sup>) = 0}}. If ''X'' is a horizontal tangent vector, then <math>D \phi(X) = d\phi(X)</math> and <math>\omega(X) = 0</math>. For the general case, let ''X''<sub>''i''</sub>'s be tangent vectors to ''P'' at some point such that some of ''X''<sub>''i''</sub>'s are horizontal and the rest vertical. If ''X''<sub>''i''</sub> is vertical, we think of it as a Lie algebra element and then identify it with the fundamental vector field generated by it. If ''X''<sub>''i''</sub> is horizontal, we replace it with the [[horizontal lift]] of the vector field extending the pushforward π''X''<sub>''i''</sub>. This way, we have extended ''X''<sub>''i''</sub>'s to vector fields. Note the extension is such that we have: [''X''<sub>''i''</sub>, ''X''<sub>''j''</sub>] = 0 if ''X''<sub>''i''</sub> is horizontal and ''X''<sub>''j''</sub> is vertical. Finally, by the [[invariant formula for exterior derivative]], we have: :<math>D \phi(X_0, \dots, X_k) - d \phi(X_0, \dots, X_k) = {1 \over k+1} \sum_0^k (-1)^i \rho(\omega(X_i)) \phi(X_0, \dots, \widehat{X_i}, \dots, X_k)</math>, which is <math>(\rho(\omega) \cdot \phi)(X_0, \cdots, X_k)</math>.</ref> where, following the notation in ''{{section link|Lie algebra-valued differential form#Operations}}'', we wrote :<math> (\rho(\omega) \cdot \phi)(v_1, \dots, v_{k+1}) = {1 \over (1+k)!} \sum_{\sigma} \operatorname{sgn}(\sigma)\rho(\omega(v_{\sigma(1)})) \phi(v_{\sigma(2)}, \dots, v_{\sigma(k+1)}). </math> <!-- If one chooses a basis ''e''<sub>''i''</sub> of <math>\mathfrak{g}</math>, then the formula reads: :<math>(D \phi)^k = d \phi^k + \rho_{ij}^k \omega^i \wedge \phi^j</math> where <math>\phi = \sum \phi^i e_i</math>, the same for ''ω'' and ''Dϕ'' and <math>\rho(e_i)e_j = \sum \rho_{ij}^k e_k</math>. --> Unlike the usual [[exterior derivative]], which squares to 0, the exterior covariant derivative does not. In general, one has, for a tensorial zero-form ''ϕ'', :<math>D^2\phi=F \cdot \phi.</math><ref>Proof: Since ''ρ'' acts on the constant part of ''ω'', it commutes with ''d'' and thus :<math>d(\rho(\omega) \cdot \phi) = d(\rho(\omega)) \cdot \phi - \rho(\omega) \cdot d\phi = \rho(d \omega) \cdot \phi - \rho(\omega) \cdot d\phi</math>. Then, according to the example at {{section link|Lie algebra-valued differential form|Operations}}, :<math>D^2 \phi = \rho(d \omega) \cdot \phi + \rho(\omega) \cdot (\rho(\omega) \cdot \phi) = \rho(d \omega) \cdot \phi + {1 \over 2} \rho([\omega \wedge \omega]) \cdot \phi,</math> which is <math>\rho(\Omega) \cdot \phi</math> by [[E. Cartan's structure equation]].</ref> where {{nowrap|1=''F'' = ''ρ''(Ω)}} is the representation{{clarify|what does "representation" mean here?|date=December 2018}} in <math>\mathfrak{gl}(V)</math> of the [[curvature form|curvature two-form]] Ω. The form F is sometimes referred to as the [[field strength tensor]], in analogy to the role it plays in [[electromagnetism]]. Note that ''D''<sup>2</sup> vanishes for a [[flat connection]] (i.e. when {{nowrap|1=Ω = 0}}). If {{nowrap|''ρ'' : ''G'' → GL('''''R'''''<sup>''n''</sup>)}}, then one can write :<math>\rho(\Omega) = F = \sum {F^i}_j {e^j}_i</math> where <math>{e^i}_j</math> is the matrix with 1 at the {{nowrap|(''i'', ''j'')}}-th entry and zero on the other entries. The matrix <math>{F^i}_j</math> whose entries are 2-forms on ''P'' is called the '''curvature matrix'''. == For vector bundles == Given a smooth real vector bundle {{math|''E'' → ''M''}} with a [[connection (vector bundle)|connection]] {{math|∇}} and rank {{mvar|r}}, the '''exterior covariant derivative''' is a real-linear map on the [[vector-valued differential forms]] that are valued in {{mvar|E}}: :<math>d^\nabla:\Omega^k(M,E)\to\Omega^{k+1}(M,E).</math> The covariant derivative is such a map for {{math|''k'' {{=}} 0}}. The exterior covariant derivatives extends this map to general {{mvar|k}}. There are several equivalent ways to define this object: * {{sfnm|1a1=Besse|1y=1987|1loc=Section 1.12|2a1=Kolář|2a2=Michor|2a3=Slovák|2y=1993|2loc=Section 11.13}} Suppose that a vector-valued differential 2-form is regarded as assigning to each {{mvar|p}} a multilinear map {{math|''s''<sub>''p''</sub>: ''T''<sub>''p''</sub>''M'' × ''T''<sub>''p''</sub>''M'' → ''E''<sub>''p''</sub>}} which is completely anti-symmetric. Then the exterior covariant derivative {{math|d<sup>∇</sup> ''s''}} assigns to each {{mvar|p}} a multilinear map {{math|''T''<sub>''p''</sub>''M'' × ''T''<sub>''p''</sub>''M'' × ''T''<sub>''p''</sub>''M'' → ''E''<sub>''p''</sub>}} given by the formula ::<math>\begin{align}\nabla_{x_1}(s(X_2,X_3))&-\nabla_{x_2}(s(X_1,X_3))+\nabla_{x_3}(s(X_1,X_2))\\ &-s([X_1,X_2],x_3)+s([X_1,X_3],x_2)-s([X_2,X_3],x_1).\end{align}</math> :where {{math|''x''<sub>1</sub>, ''x''<sub>2</sub>, ''x''<sub>3</sub>}} are arbitrary tangent vectors at {{mvar|p}} which are extended to smooth locally-defined vector fields {{math|''X''<sub>1</sub>, ''X''<sub>2</sub> ''X''<sub>3</sub>}}. The legitimacy of this definition depends on the fact that the above expression depends only on {{math|''x''<sub>1</sub>, ''x''<sub>2</sub>, ''x''<sub>3</sub>}}, and not on the choice of extension. This can be verified by the Leibniz rule for covariant differentiation and for the [[Lie bracket of vector fields]]. The pattern established in the above formula in the case {{math|''k'' {{=}} 2}} can be directly extended to define the exterior covariant derivative for arbitrary {{mvar|k}}. * {{sfnm|1a1=Donaldson|1a2=Kronheimer|1y=1990|1p=35|2a1=Eguchi|2a2=Gilkey|2a3=Hanson|2y=1980|2p=281|3a1=Jost|3y=2017|3p=169|4a1=Taylor|4y=2011|4p=547}} The exterior covariant derivative may be characterized by the axiomatic property of defining for each {{mvar|k}} a real-linear map {{math|Ω<sup>''k''</sup>(''M'', ''E'') → Ω<sup>''k'' + 1</sup>(''M'', ''E'')}} which for {{math|''k'' {{=}} 0}} is the covariant derivative and in general satisfies the Leibniz rule ::<math>d^\nabla(\omega \wedge s) = (d\omega) \wedge s + (-1)^k \omega \wedge (d^\nabla s)</math> :for any differential {{mvar|k}}-form {{math|ω}} and any vector-valued form {{mvar|s}}. This may also be viewed as a direct inductive definition. For instance, for any vector-valued differential 1-form {{mvar|s}} and any local frame {{math|''e''<sub>1</sub>, ..., ''e''<sub>''r''</sub>}} of the vector bundle, the coordinates of {{mvar|s}} are locally-defined differential 1-forms {{math|''ω''<sup>1</sup>, ..., ''ω''<sup>''r''</sup>}}. The above inductive formula then says that{{sfnm|1a1=Milnor|1a2=Stasheff|1y=1974|1pp=292–293}} ::<math>\begin{align} d^\nabla s&=d^\nabla(\omega^1 e_1+\cdots+\omega^r e_r)\\ &=(d\omega^1) e_1+\cdots+(d\omega^r) e_r-\omega^1 \nabla e_1-\cdots-\omega^r\nabla e_r.\end{align}</math> :In order for this to be a legitimate definition of {{math|''d''<sup>∇</sup>''s''}}, it must be verified that the choice of local frame is irrelevant. This can be checked by considering a second local frame obtained by an arbitrary change-of-basis matrix; the [[inverse matrix]] provides the change-of-basis matrix for the 1-forms {{math|''ω''<sub>1</sub>, ..., ''ω''<sub>''r''</sub>}}. When substituted into the above formula, the Leibniz rule as applied for the standard exterior derivative and for the covariant derivative {{math|∇}} cancel out the arbitrary choice. * {{sfnm|1a1=Eells|1a2=Sampson|1y=1964|1loc=Section 3.A.3|2a1=Penrose|2a2=Rindler|2y=1987|2p=263}} A vector-valued differential 2-form {{mvar|s}} may be regarded as a certain collection of functions {{math|''s''<sup>α</sup><sub>''ij''</sub>}} assigned to an arbitrary local frame of {{mvar|E}} over a local coordinate chart of {{mvar|M}}. The exterior covariant derivative is then defined as being given by the functions ::<math>(d^\nabla s)^\alpha{}_{ijk}=\nabla_is^\alpha{}_{jk}-\nabla_js^\alpha{}_{ik}+\nabla_ks^\alpha{}_{ij}.</math> :The fact that this defines a tensor field valued in {{mvar|E}} is a direct consequence of the same fact for the covariant derivative. The further fact that it is a differential 3-form valued in {{mvar|E}} asserts the full anti-symmetry in {{math|''i'', ''j'', ''k''}} and is directly verified from the above formula and the contextual assumption that {{mvar|s}} is a vector-valued differential 2-form, so that {{math|''s''<sup>α</sup><sub>''ij''</sub> {{=}} −''s''<sup>α</sup><sub>''ji''</sub>}}. The pattern in this definition of the exterior covariant derivative for {{math|''k'' {{=}} 2}} can be directly extended to larger values of {{mvar|k}}.<br />This definition may alternatively be expressed in terms of an arbitrary local frame of {{mvar|E}} but without considering coordinates on {{mvar|M}}. Then a vector-valued differential 2-form is expressed by differential 2-forms {{math|''s''<sup>1</sup>, ..., ''s''<sup>''r''</sup>}} and the connection is expressed by the connection 1-forms, a skew-symmetric {{math|''r'' × ''r''}} matrix of differential 1-forms {{math|θ<sub>α</sub><sup>β</sup>}}. The exterior covariant derivative of {{mvar|s}}, as a vector-valued differential 3-form, is expressed relative to the local frame by {{mvar|r}} many differential 3-forms, defined by ::<math>(d^\nabla s)^\alpha=d(s^\alpha)+\theta_\beta{}^\alpha\wedge s^\beta.</math> In the case of the trivial real line bundle {{math|ℝ × ''M'' → ''M''}} with its standard connection, vector-valued differential forms and differential forms can be naturally identified with one another, and each of the above definitions coincides with the standard [[exterior derivative]]. Given a principal bundle, any [[representation of a Lie group|linear representation]] of the structure group defines an [[associated bundle]], and any connection on the principal bundle induces a connection on the associated vector bundle. Differential forms valued in the vector bundle may be naturally identified with fully anti-symmetric [[Vector-valued differential forms#Basic or tensorial forms on principal bundles|tensorial forms]] on the total space of the principal bundle. Under this identification, the notions of exterior covariant derivative for the principal bundle and for the vector bundle coincide with one another.{{sfnm|1a1=Kolář|1a2=Michor|1a3=Slovák|1y=1993|1pp=112–114}} The [[Curvature form|curvature]] of a connection on a vector bundle may be defined as the composition of the two exterior covariant derivatives {{math|Ω<sup>0</sup>(''M'', ''E'') → Ω<sup>1</sup>(''M'', ''E'')}} and {{math|Ω<sup>1</sup>(''M'', ''E'') → Ω<sup>2</sup>(''M'', ''E'')}}, so that it is defined as a real-linear map {{math|''F'': Ω<sup>0</sup>(''M'', ''E'') → Ω<sup>2</sup>(''M'', ''E'')}}. It is a fundamental but not immediately apparent fact that {{math|''F''(''s'')<sub>''p''</sub>: ''T''<sub>''p''</sub>''M'' × ''T''<sub>''p''</sub>''M'' → ''E''<sub>''p''</sub>}} only depends on {{math|''s''(''p'')}}, and does so linearly. As such, the curvature may be regarded as an element of {{math|Ω<sup>2</sup>(''M'', End(''E''))}}. Depending on how the exterior covariant derivative is formulated, various alternative but equivalent definitions of curvature (some without the language of exterior differentiation) can be obtained. It is a well-known fact that the composition of the standard exterior derivative with itself is zero: {{math|''d''(''d''ω) {{=}} 0}}. In the present context, this can be regarded as saying that the standard connection on the trivial line bundle {{math|ℝ × ''M'' → ''M''}} has zero curvature. == Example == * [[Bianchi's second identity]], which says that the exterior covariant derivative of Ω is zero (that is, {{nowrap|1=''D''Ω = 0}}) can be stated as: <math>d\Omega + \operatorname{ad}(\omega) \cdot \Omega = d\Omega + [\omega \wedge \Omega] = 0</math>. ==Notes== {{reflist}} ==References== {{refbegin}} * {{cite book|last1=Besse|first1=Arthur L.|title=Einstein manifolds|series=Ergebnisse der Mathematik und ihrer Grenzgebiete (3)|volume=10|publisher=[[Springer-Verlag]]|location=Berlin|year=1987|isbn=3-540-15279-2|mr=0867684|others=Reprinted in 2008|doi=10.1007/978-3-540-74311-8|author-link1=Arthur Besse|zbl=0613.53001}} *{{cite book|mr=0685274|last1=Choquet-Bruhat|first1=Yvonne|last2=DeWitt-Morette|first2=Cécile|last3=Dillard-Bleick|first3=Margaret|title=Analysis, manifolds and physics|edition=Second edition of 1977 original|publisher=[[North-Holland Publishing Company|North-Holland Publishing Co.]]|location=Amsterdam–New York|year=1982|isbn=0-444-86017-7|author-link1=Yvonne Choquet-Bruhat|author-link2=Cécile DeWitt-Morette|zbl=0492.58001}} *{{cite book|last1=Donaldson|first1=S. K.|last2=Kronheimer|first2=P. B.|title=The geometry of four-manifolds|series=Oxford Mathematical Monographs|publisher=[[Oxford University Press|The Clarendon Press, Oxford University Press]]|location=New York|year=1990|isbn=0-19-853553-8|author-link1=Simon Donaldson|author-link2=Peter Kronheimer|mr=1079726|zbl=0820.57002}} *{{cite journal|last1=Eells|first1=James Jr.|last2=Sampson|first2=J. H.|title=Harmonic mappings of Riemannian manifolds|journal=[[American Journal of Mathematics]]|volume=86|year=1964|pages=109–160|mr=0164306|author-link1=James Eells|author-link2=Joseph H. Sampson|issue=1|doi=10.2307/2373037| jstor=2373037 |zbl=0122.40102}} *{{cite journal|last1=Eguchi|first1=Tohru|last2=Gilkey|first2=Peter B.|last3=Hanson|first3=Andrew J.|title=Gravitation, gauge theories and differential geometry|journal=[[Physics Reports]]|volume=66|year=1980|issue=6|pages=213–393|mr=0598586|author-link1=Tohru Eguchi|author-link2=Peter Gilkey|author-link3=Andrew Hanson|doi=10.1016/0370-1573(80)90130-1| bibcode=1980PhR....66..213E }} *{{cite book|last1=Jost|first1=Jürgen|title=Riemannian geometry and geometric analysis| series=Universitext |author-link1=Jürgen Jost|edition=Seventh edition of 1995 original|publisher=[[Springer, Cham]]|year=2017|isbn=978-3-319-61859-3|mr=3726907|doi=10.1007/978-3-319-61860-9|zbl=1380.53001}} *{{cite book|author-link1=Shoshichi Kobayashi|mr=0152974|zbl=0119.37502|last1=Kobayashi|first1=Shoshichi|last2=Nomizu|first2=Katsumi|author-link2=Katsumi Nomizu|title=Foundations of differential geometry. Vol I|title-link=Foundations of differential geometry|publisher=[[John Wiley & Sons, Inc.]]|location=New York–London|year=1963|others=Reprinted in 1996|isbn=0-471-15733-3|series=Interscience Tracts in Pure and Applied Mathematics|volume=15| issue=1 }} * {{cite book|last1=Kolář|first1=Ivan|last2=Michor|first2=Peter W.|last3=Slovák|first3=Jan|title=Natural operations in differential geometry|publisher=[[Springer-Verlag]]|location=Berlin|year=1993|isbn=3-540-56235-4|mr=1202431|zbl=0782.53013|url=https://www.emis.de///monographs/KSM/}} *{{cite book|last1=Milnor|first1=John W.|last2=Stasheff|first2=James D.|title=Characteristic classes|series=Annals of Mathematics Studies|volume=76|publisher=[[Princeton University Press]]|location=Princeton, NJ|year=1974|mr=0440554|author-link1=John Milnor|author-link2=James Stasheff|zbl=0298.57008|doi=10.1515/9781400881826|isbn=0-691-08122-0}} *{{cite book|last1=Nakahara|first1=Mikio|title=Geometry, topology and physics|edition=Second edition of 1990 original|series=Graduate Student Series in Physics|publisher=Institute of Physics, Bristol|year=2003|isbn=0-7503-0606-8|mr=2001829|doi=10.1201/9781420056945|doi-broken-date=2024-11-11 |zbl=1090.53001}} *{{cite book|last1=Penrose|first1=Roger|last2=Rindler|first2=Wolfgang|title=Spinors and space-time. Vol. 1. Two-spinor calculus and relativistic fields|series=Cambridge Monographs on Mathematical Physics|publisher=[[Cambridge University Press]]|location=Cambridge|year=1987|isbn=0-521-33707-0|author-link1=Roger Penrose|author-link2=Wolfgang Rindler|mr=0917488|edition=Second edition of 1984 original|doi=10.1017/CBO9780511564048|zbl=0602.53001}} *{{cite book|mr=2743652|last1=Taylor|first1=Michael E.|author-link1=Michael E. Taylor|title=Partial differential equations II. Qualitative studies of linear equations|edition=Second edition of 1996 original|series=Applied Mathematical Sciences|volume=116|publisher=[[Springer Publishing|Springer]]|location=New York|year=2011|isbn=978-1-4419-7051-0|doi=10.1007/978-1-4419-7052-7|zbl=1206.35003}} {{refend}} {{Tensors}} [[Category:Connection (mathematics)]] [[Category:Differential geometry]] [[Category:Fiber bundles]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Clarify
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Section link
(
edit
)
Template:See also
(
edit
)
Template:Sfnm
(
edit
)
Template:Tensors
(
edit
)