Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Extreme point
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Point not between two other points}} {{Other uses}} [[Image:Extreme points.svg|thumb|right|A convex set in light blue, and its extreme points in red.]] In [[mathematics]], an '''extreme point''' of a [[convex set]] <math>S</math> in a [[Real number|real]] or [[Complex number|complex]] [[vector space]] is a point in <math>S</math> that does not lie in any open [[line segment]] joining two points of <math>S.</math> The extreme points of a line segment are called its ''[[endpoint (geometry)|endpoints]]''. In [[linear programming]] problems, an extreme point is also called ''[[vertex (geometry)|vertex]]'' or ''corner point'' of <math>S.</math><ref>{{Cite web|url=https://www.quora.com/What-is-the-difference-between-corner-points-and-extreme-points-in-linear-programming-problems|title=What is the difference between corner points and extreme points in linear programming problems?|last=Saltzman|first=Matthew}}</ref> ==Definition== Throughout, it is assumed that <math>X</math> is a [[Real number|real]] or [[Complex number|complex]] [[vector space]]. For any <math>p, x, y \in X,</math> say that <math>p</math> '''{{visible anchor|lies between}}'''{{sfn|Narici|Beckenstein|2011|pp=275-339}} <math>x</math> and <math>y</math> if <math>x \neq y</math> and there exists a <math>0 < t < 1</math> such that <math>p = t x + (1-t) y.</math> If <math>K</math> is a subset of <math>X</math> and <math>p \in K,</math> then <math>p</math> is called an '''{{visible anchor|extreme point}}'''{{sfn|Narici|Beckenstein|2011|pp=275-339}} of <math>K</math> if it does not lie between any two {{em|distinct}} points of <math>K.</math> That is, if there does {{em|not}} exist <math>x, y \in K</math> and <math>0 < t < 1</math> such that <math>x \neq y</math> and <math>p = t x + (1-t) y.</math> The set of all extreme points of <math>K</math> is denoted by <math>\operatorname{extreme}(K).</math> '''Generalizations''' If <math>S</math> is a subset of a vector space then a linear sub-variety (that is, an [[affine subspace]]) <math>A</math> of the vector space is called a {{em|{{visible anchor|support variety}}}} if <math>A</math> meets <math>S</math> (that is, <math>A \cap S</math> is not empty) and every open segment <math>I \subseteq S</math> whose interior meets <math>A</math> is necessarily a subset of <math>A.</math>{{sfn|Grothendieck|1973|p=186}} A 0-dimensional support variety is called an extreme point of <math>S.</math>{{sfn|Grothendieck|1973|p=186}} ===Characterizations=== The '''{{visible anchor|midpoint}}'''{{sfn|Narici|Beckenstein|2011|pp=275-339}} of two elements <math>x</math> and <math>y</math> in a vector space is the vector <math>\tfrac{1}{2}(x+y).</math> For any elements <math>x</math> and <math>y</math> in a vector space, the set <math>[x, y] = \{t x + (1-t) y : 0 \leq t \leq 1\}</math> is called the '''{{visible anchor|closed line segment}}''' or '''{{visible anchor|closed interval}}''' between <math>x</math> and <math>y.</math> The '''{{visible anchor|open line segment}}''' or '''{{visible anchor|open interval}}''' between <math>x</math> and <math>y</math> is <math>(x, x) = \varnothing</math> when <math>x = y</math> while it is <math>(x, y) = \{t x + (1-t) y : 0 < t < 1\}</math> when <math>x \neq y.</math>{{sfn|Narici|Beckenstein|2011|pp=275-339}} The points <math>x</math> and <math>y</math> are called the '''{{visible anchor|endpoints}}''' of these interval. An interval is said to be a '''{{visible anchor|non−degenerate interval}}''' or a '''{{visible anchor|proper interval}}''' if its endpoints are distinct. The '''{{visible anchor|midpoint of an interval}}''' is the midpoint of its endpoints. The closed interval <math>[x, y]</math> is equal to the [[convex hull]] of <math>(x, y)</math> if (and only if) <math>x \neq y.</math> So if <math>K</math> is convex and <math>x, y \in K,</math> then <math>[x, y] \subseteq K.</math> If <math>K</math> is a nonempty subset of <math>X</math> and <math>F</math> is a nonempty subset of <math>K,</math> then <math>F</math> is called a '''{{visible anchor|face}}'''{{sfn|Narici|Beckenstein|2011|pp=275-339}} of <math>K</math> if whenever a point <math>p \in F</math> lies between two points of <math>K,</math> then those two points necessarily belong to <math>F.</math> {{Math theorem|name=Theorem{{sfn|Narici|Beckenstein|2011|pp=275-339}}|math_statement= Let <math>K</math> be a non-empty convex subset of a vector space <math>X</math> and let <math>p \in K.</math> Then the following statements are equivalent: <ol> <li><math>p</math> is an extreme point of <math>K.</math></li> <li><math>K \setminus \{p\}</math> is convex.</li> <li><math>p</math> is not the midpoint of a non-degenerate line segment contained in <math>K.</math></li> <li>for any <math>x, y \in K,</math> if <math>p \in [x, y]</math> then <math>x = p \text{ or } y = p.</math></li> <li>if <math>x \in X</math> is such that both <math>p + x</math> and <math>p - x</math> belong to <math>K,</math> then <math>x = 0.</math></li> <li><math>\{p\}</math> is a face of <math>K.</math></li> </ol> }} ==Examples== If <math>a < b</math> are two real numbers then <math>a</math> and <math>b</math> are extreme points of the interval <math>[a, b].</math> However, the open interval <math>(a, b)</math> has no extreme points.{{sfn |Narici|Beckenstein|2011|pp=275-339}} Any [[open interval]] in <math>\R</math> has no extreme points while any non-degenerate [[closed interval]] not equal to <math>\R</math> does have extreme points (that is, the closed interval's endpoint(s)). More generally, any [[Open set|open subset]] of finite-dimensional [[Euclidean space]] <math>\R^n</math> has no extreme points. The extreme points of the [[closed unit disk]] in <math>\R^2</math> is the [[unit circle]]. The perimeter of any convex polygon in the plane is a face of that polygon.{{sfn|Narici|Beckenstein|2011|pp=275-339}} The vertices of any convex polygon in the plane <math>\R^2</math> are the extreme points of that polygon. An injective linear map <math>F : X \to Y</math> sends the extreme points of a convex set <math>C \subseteq X</math> to the extreme points of the convex set <math>F(X).</math>{{sfn|Narici|Beckenstein|2011|pp=275-339}} This is also true for injective affine maps. ==Properties== The extreme points of a compact convex set form a [[Baire space]] (with the subspace topology) but this set may {{em|fail}} to be closed in <math>X.</math>{{sfn|Narici|Beckenstein|2011|pp=275-339}} ==Theorems== ===Krein–Milman theorem=== The [[Krein–Milman theorem]] is arguably one of the most well-known theorems about extreme points. {{Math theorem|name=[[Krein–Milman theorem]]|math_statement= If <math>S</math> is convex and [[Compact space|compact]] in a [[locally convex topological vector space]], then <math>S</math> is the closed [[convex hull]] of its extreme points: In particular, such a set has extreme points. }} ===For Banach spaces=== These theorems are for [[Banach space]]s with the [[Radon–Nikodym property]]. A theorem of [[Joram Lindenstrauss]] states that, in a Banach space with the Radon–Nikodym property, a nonempty [[closed set|closed]] and [[bounded set]] has an extreme point. (In infinite-dimensional spaces, the property of [[compact space|compactness]] is stronger than the joint properties of being closed and being bounded.<ref>{{cite journal|last=Artstein|first=Zvi|title=Discrete and continuous bang-bang and facial spaces, or: Look for the extreme points|journal=SIAM Review|volume=22|year=1980|number=2|pages=172–185|doi=10.1137/1022026|mr=564562|jstor=2029960}}</ref>) {{Math theorem|name=Theorem|note=[[Gerald Edgar]]|math_statement= Let <math>E</math> be a Banach space with the Radon–Nikodym property, let <math>C</math> be a separable, closed, bounded, convex subset of <math>E,</math> and let <math>a</math> be a point in <math>C.</math> Then there is a [[probability measure]] <math>p</math> on the universally measurable sets in <math>C</math> such that <math>a</math> is the [[barycenter]] of <math>p,</math> and the set of extreme points of <math>C</math> has <math>p</math>-measure 1.<ref>Edgar GA. [https://www.ams.org/journals/proc/1975-049-02/S0002-9939-1975-0372586-2/S0002-9939-1975-0372586-2.pdf A noncompact Choquet theorem.] Proceedings of the American Mathematical Society. 1975;49(2):354–8.</ref> }} Edgar’s theorem implies Lindenstrauss’s theorem. ==Related notions== A closed convex subset of a [[topological vector space]] is called {{em|[[Strictly convex set|strictly convex]]}} if every one of its [[Boundary (topology)|(topological) boundary points]] is an extreme point.{{sfn|Halmos|1982|p=5}} The [[unit ball]] of any [[Hilbert space]] is a strictly convex set.{{sfn|Halmos|1982|p=5}} ===''k''-extreme points=== More generally, a point in a convex set <math>S</math> is '''<math>k</math>-extreme''' if it lies in the interior of a <math>k</math>-dimensional convex set within <math>S,</math> but not a <math>k + 1</math>-dimensional convex set within <math>S.</math> Thus, an extreme point is also a <math>0</math>-extreme point. If <math>S</math> is a polytope, then the <math>k</math>-extreme points are exactly the interior points of the <math>k</math>-dimensional faces of <math>S.</math> More generally, for any convex set <math>S,</math> the <math>k</math>-extreme points are partitioned into <math>k</math>-dimensional open faces. The finite-dimensional Krein–Milman theorem, which is due to Minkowski, can be quickly proved using the concept of <math>k</math>-extreme points. If <math>S</math> is closed, bounded, and <math>n</math>-dimensional, and if <math>p</math> is a point in <math>S,</math> then <math>p</math> is <math>k</math>-extreme for some <math>k \leq n.</math> The theorem asserts that <math>p</math> is a convex combination of extreme points. If <math>k = 0</math> then it is immediate. Otherwise <math>p</math> lies on a line segment in <math>S</math> which can be maximally extended (because <math>S</math> is closed and bounded). If the endpoints of the segment are <math>q</math> and <math>r,</math> then their extreme rank must be less than that of <math>p,</math> and the theorem follows by induction. ==See also== * [[Extreme set]] * [[Exposed point]] * {{annotated link|Choquet theory}} * [[Bang–bang control]]<ref>{{cite journal|last=Artstein|first=Zvi|title=Discrete and continuous bang-bang and facial spaces, or: Look for the extreme points|journal=SIAM Review|volume=22|year=1980|number=2|pages=172–185|doi=10.1137/1022026|jstor=2029960 |mr=564562}}</ref> ==Citations== {{reflist|group=note}} {{reflist}} ==Bibliography== * {{Adasch Topological Vector Spaces|edition=2}} <!--{{sfn|Adasch|Ernst|Keim|1978|p=}}--> * {{Bourbaki Topological Vector Spaces Part 1 Chapters 1–5}} <!--{{sfn|Bourbaki|1987|p=}}--> * {{cite web|editor=Paul E. Black|date=2004-12-17|title=extreme point|url=https://xlinux.nist.gov/dads/HTML/extremepoint.html|work=[[Dictionary of algorithms and data structures]]|publisher=US [[National institute of standards and technology]]|access-date=2011-03-24}} * {{cite encyclopedia|last1=Borowski|first1=Ephraim J.|last2=Borwein|first2=Jonathan M.|year=1989|article=extreme point|encyclopedia=Dictionary of mathematics|series=Collins dictionary|publisher=[[HarperCollins]]|isbn=0-00-434347-6}} * {{Grothendieck Topological Vector Spaces}} <!--{{sfn|Grothendieck|1973|p=}}--> * {{Halmos A Hilbert Space Problem Book 1982}} <!--{{sfn|Halmos|1982|pp=}}--> * {{Jarchow Locally Convex Spaces}} <!--{{sfn|Jarchow|1981|p=}}--> * {{Köthe Topological Vector Spaces I}} <!--{{sfn|Köthe|1983|p=}}--> * {{Köthe Topological Vector Spaces II}} <!--{{sfn|Köthe|1979|p=}}--> * {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!--{{sfn|Narici|Beckenstein|2011|p=}}--> * {{Robertson Topological Vector Spaces}} <!--{{sfn|Robertson|Robertson|1980|p=}}--> * {{Rudin Walter Functional Analysis|edition=2}} <!--{{sfn|Rudin|1991|p=}}--> * {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!--{{sfn|Schaefer|Wolff|1999|p=}}--> * {{Schechter Handbook of Analysis and Its Foundations}} <!--{{sfn|Schechter|1996|p=}}--> * {{Trèves François Topological vector spaces, distributions and kernels}} <!--{{sfn|Trèves|2006|p=}}--> * {{Wilansky Modern Methods in Topological Vector Spaces|edition=1}} <!--{{sfn|Wilansky|2013|p=}}--> {{Functional analysis}} {{Topological vector spaces}} [[Category:Convex geometry]] [[Category:Convex hulls]] [[Category:Functional analysis]] [[Category:Mathematical analysis]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Adasch Topological Vector Spaces
(
edit
)
Template:Annotated link
(
edit
)
Template:Bourbaki Topological Vector Spaces Part 1 Chapters 1–5
(
edit
)
Template:Cite encyclopedia
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Em
(
edit
)
Template:Functional analysis
(
edit
)
Template:Grothendieck Topological Vector Spaces
(
edit
)
Template:Halmos A Hilbert Space Problem Book 1982
(
edit
)
Template:Jarchow Locally Convex Spaces
(
edit
)
Template:Köthe Topological Vector Spaces I
(
edit
)
Template:Köthe Topological Vector Spaces II
(
edit
)
Template:Math theorem
(
edit
)
Template:Narici Beckenstein Topological Vector Spaces
(
edit
)
Template:Other uses
(
edit
)
Template:Reflist
(
edit
)
Template:Robertson Topological Vector Spaces
(
edit
)
Template:Rudin Walter Functional Analysis
(
edit
)
Template:Schaefer Wolff Topological Vector Spaces
(
edit
)
Template:Schechter Handbook of Analysis and Its Foundations
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Topological vector spaces
(
edit
)
Template:Trèves François Topological vector spaces, distributions and kernels
(
edit
)
Template:Visible anchor
(
edit
)
Template:Wilansky Modern Methods in Topological Vector Spaces
(
edit
)