Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Faltings's theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Curves of genus > 1 over the rationals have only finitely many rational points}} {{Infobox mathematical statement | name = Faltings's theorem | image = Gerd Faltings MFO.jpg | caption = Gerd Faltings | field = [[Arithmetic geometry]] | conjectured by = [[Louis Mordell]] | conjecture date = 1922 | first proof by = [[Gerd Faltings]] | first proof date = 1983 | open problem = | known cases = | implied by = | equivalent to = | generalizations = [[Bombieri–Lang conjecture]]<br/>[[Glossary of arithmetic and diophantine geometry#M|Mordell–Lang conjecture]] | consequences = [[Siegel's theorem on integral points]] }} '''Faltings's theorem''' is a result in [[arithmetic geometry]], according to which a curve of [[Genus (mathematics)|genus]] greater than 1 over the field <math>\mathbb{Q}</math> of [[rational number]]s has only finitely many [[rational point]]s. This was conjectured in 1922 by [[Louis Mordell]],{{sfn|Mordell|1922}} and known as the '''Mordell conjecture''' until its 1983 proof by [[Gerd Faltings]].{{sfnm|1a1=Faltings|2a1=Faltings|1y=1983|2y=1984}} The conjecture was later generalized by replacing <math>\mathbb{Q}</math> by any [[number field]]. ==Background== Let <math>C</math> be a [[Singular point of a curve|non-singular]] algebraic curve of [[genus (mathematics)|genus]] <math>g</math> over <math>\mathbb{Q}</math>. Then the set of rational points on <math>C</math> may be determined as follows: * When <math>g=0</math>, there are either no points or infinitely many. In such cases, <math>C</math> may be handled as a [[conic section]]. * When <math>g=1</math>, if there are any points, then <math>C</math> is an [[elliptic curve]] and its rational points form a [[finitely generated abelian group]]. (This is ''Mordell's Theorem'', later generalized to the [[Mordell–Weil theorem]].) Moreover, [[Mazur's torsion theorem]] restricts the structure of the torsion subgroup. * When <math>g>1</math>, according to Faltings's theorem, <math>C</math> has only a finite number of rational points. ==Proofs== [[Igor Shafarevich]] conjectured that there are only finitely many isomorphism classes of [[abelian variety|abelian varieties]] of fixed dimension and fixed [[Abelian variety#Polarisations|polarization]] degree over a fixed number field with [[good reduction]] outside a fixed finite set of [[place (mathematics)|place]]s.{{sfn|Shafarevich|1963}} [[Aleksei Parshin]] showed that Shafarevich's finiteness conjecture would imply the Mordell conjecture, using what is now called Parshin's trick.{{sfn|Parshin|1968}} [[Gerd Faltings]] proved Shafarevich's finiteness conjecture using a known reduction to a case of the [[Tate conjecture]], together with tools from [[algebraic geometry]], including the theory of [[Néron model]]s.{{sfn|Faltings|1983}} The main idea of Faltings's proof is the comparison of [[Height function#Faltings height|Faltings heights]] and [[Height function#Naive height|naive heights]] via [[Siegel modular variety|Siegel modular varieties]].{{efn|"Faltings relates the two notions of height by means of the Siegel moduli space.... It is the main idea of the proof." {{cite journal |last=Bloch |first=Spencer |s2cid=306251 |author-link=Spencer Bloch |page=44 |title=The Proof of the Mordell Conjecture |journal=The Mathematical Intelligencer |volume=6 |issue=2 |year=1984|doi=10.1007/BF03024155 }}}} ===Later proofs=== * [[Paul Vojta]] gave a proof based on [[Diophantine approximation]].{{sfn|Vojta|1991}} [[Enrico Bombieri]] found a more elementary variant of Vojta's proof.{{sfn|Bombieri|1990}} *Brian Lawrence and [[Akshay Venkatesh]] gave a proof based on [[p-adic Hodge theory|{{mvar|p}}-adic Hodge theory]], borrowing also some of the easier ingredients of Faltings's original proof.{{sfn|Lawrence|Venkatesh|2020}} ==Consequences== Faltings's 1983 paper had as consequences a number of statements which had previously been conjectured: * The ''Mordell conjecture'' that a curve of genus greater than 1 over a number field has only finitely many rational points; * The ''Isogeny theorem'' that abelian varieties with isomorphic [[Tate module]]s (as <math>\mathbb{Q}_{\ell}</math>-modules with Galois action) are [[Isogeny|isogenous]]. A sample application of Faltings's theorem is to a weak form of [[Fermat's Last Theorem]]: for any fixed <math>n\ge 4</math> there are at most finitely many primitive integer solutions (pairwise [[coprime]] solutions) to <math>a^n+b^n=c^n</math>, since for such <math>n</math> the [[Fermat curve]] <math>x^n+y^n=1</math> has genus greater than 1. ==Generalizations== Because of the [[Mordell–Weil theorem]], Faltings's theorem can be reformulated as a statement about the intersection of a curve <math>C</math> with a finitely generated subgroup <math>\Gamma</math> of an abelian variety <math>A</math>. Generalizing by replacing <math>A</math> by a [[semiabelian variety]], <math>C</math> by an arbitrary subvariety of <math>A</math>, and <math>\Gamma</math> by an arbitrary finite-rank subgroup of <math>A</math> leads to the [[Mordell–Lang conjecture]], which was proved in 1995 by [[Michael McQuillan (mathematician)|McQuillan]]{{sfn|McQuillan|1995}} following work of Laurent, [[Michel Raynaud|Raynaud]], Hindry, [[Paul Vojta|Vojta]], and [[Gerd Faltings|Faltings]]. Another higher-dimensional generalization of Faltings's theorem is the [[Bombieri–Lang conjecture]] that if <math>X</math> is a [[pseudo-canonical variety]] (i.e., a variety of general type) over a number field <math>k</math>, then <math>X(k)</math> is not [[Zariski topology|Zariski]] [[dense set|dense]] in <math>X</math>. Even more general conjectures have been put forth by [[Paul Vojta]]. The Mordell conjecture for function fields was proved by [[Yuri Ivanovich Manin]]{{sfn|Manin|1963}} and by [[Hans Grauert]].{{sfn|Grauert|1965}} In 1990, [[Robert F. Coleman]] found and fixed a gap in Manin's proof.{{sfn|Coleman|1990}} ==Notes== {{notelist}} == Citations == {{reflist}} ==References== {{refbegin|2}} *{{cite journal | last=Bombieri | first=Enrico | author-link1=Enrico Bombieri |year=1990|title=The Mordell conjecture revisited| journal=Ann. Scuola Norm. Sup. Pisa Cl. Sci.|volume=17| issue=4| pages=615–640 | mr=1093712 | url=http://www.numdam.org/item?id=ASNSP_1990_4_17_4_615_0 }} *{{Cite journal | last1=Coleman | first1=Robert F. | author-link1=Robert F. Coleman | year=1990 | title=Manin's proof of the Mordell conjecture over function fields | url=https://www.e-periodica.ch/digbib/view?pid=ens-001:1990:36#560 | journal=L'Enseignement Mathématique |series=2e Série | issn=0013-8584 | volume=36 | issue=3 | pages=393–427 | mr=1096426 }} *{{cite book|title=Arithmetic geometry. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30 – August 10, 1984 |editor1-last=Cornell | editor1-first=Gary | editor2-link=Joseph Hillel Silverman| editor2-last=Silverman | editor2-first=Joseph H. |year=1986 |publisher=Springer-Verlag |location= New York |isbn=0-387-96311-1 | doi=10.1007/978-1-4613-8655-1 | mr=861969}} → Contains an English translation of {{harvtxt|Faltings|1983}} *{{cite journal |author-link=Gerd Faltings| last=Faltings |first=Gerd |year=1983 |title=Endlichkeitssätze für abelsche Varietäten über Zahlkörpern |journal=[[Inventiones Mathematicae]] |volume=73 |issue=3 |pages=349–366 |doi=10.1007/BF01388432 | bibcode=1983InMat..73..349F | mr=0718935 | trans-title=Finiteness theorems for abelian varieties over number fields | language=de }} *{{cite journal |last=Faltings |first=Gerd |year=1984 |title=Erratum: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern |journal=[[Inventiones Mathematicae]] |volume=75 |issue=2 |pages=381 |doi=10.1007/BF01388572 | mr=0732554 | language=de |doi-access=free }} *{{cite journal | last=Faltings | first=Gerd | year=1991 | title=Diophantine approximation on abelian varieties | journal=[[Ann. of Math.]] | volume=133 | issue=3 | pages=549–576 | doi=10.2307/2944319 | jstor=2944319 | mr=1109353 }} *{{cite encyclopedia | last=Faltings | first=Gerd | year=1994 | chapter=The general case of S. Lang's conjecture | title=Barsotti Symposium in Algebraic Geometry. Papers from the symposium held in Abano Terme, June 24–27, 1991. | editor1-first=Valentino | editor1-last=Cristante | editor2-first=William | editor2-last=Messing | isbn=0-12-197270-4 | series=Perspectives in Mathematics | publisher=Academic Press, Inc. | location=San Diego, CA | mr=1307396 }} *{{Cite journal | author-link1=Hans Grauert|last1=Grauert | first1=Hans | title=Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper | url=http://www.numdam.org/item?id=PMIHES_1965__25__131_0 | year=1965 | journal=[[Publications Mathématiques de l'IHÉS]] |volume=25 | issn=1618-1913 | issue=25 | pages=131–149 |doi=10.1007/BF02684399 | mr=0222087 }} *{{cite book | title=Diophantine geometry | first1=Marc | last1=Hindry |last2=Silverman | first2=Joseph H. | series= [[Graduate Texts in Mathematics]] | volume=201 | publisher=Springer-Verlag | year=2000 | isbn=0-387-98981-1 | mr=1745599 | doi=10.1007/978-1-4612-1210-2 | location=New York}} → Gives Vojta's proof of Faltings's Theorem. *{{cite book | first=Serge | last=Lang | author-link=Serge Lang | title=Survey of Diophantine geometry | url=https://archive.org/details/surveydiophantin00lang_347 | url-access=limited | publisher=[[Springer-Verlag]] | year=1997 | isbn=3-540-61223-8 | pages=[https://archive.org/details/surveydiophantin00lang_347/page/n114 101]–122 }} *{{cite journal |last1=Lawrence |first1=Brian |last2=Venkatesh |first2=Akshay |title=Diophantine problems and {{mvar|p}}-adic period mappings |journal=Invent. Math. |date=2020 |volume=221 |issue=3 |pages=893–999 |doi=10.1007/s00222-020-00966-7|arxiv=1807.02721 |bibcode=2020InMat.221..893L }} *{{Cite journal | author-link1=Yuri Ivanovich Manin | last1=Manin | first1=Ju. I. | title=Rational points on algebraic curves over function fields | url=http://mi.mathnet.ru/eng/izv3174 | year=1963 | language=ru | journal=Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya | issn=0373-2436 | volume=27 | pages=1395–1440 | mr=0157971 }} (Translation: {{Cite journal | last1=Manin | first1=Yu. | title=Rational points on algebraic curves over function fields | journal=American Mathematical Society Translations |series=Series 2 | issn= 0065-9290 | volume=59 | year=1966 | pages=189–234 | doi=10.1090/trans2/050/11 | isbn=9780821817506 }} ) *{{cite journal |last1=McQuillan |first1=Michael |title=Division points on semi-abelian varieties |journal=Invent. Math. |date=1995 |volume=120 |issue=1 |pages=143–159 |doi=10.1007/BF01241125|bibcode=1995InMat.120..143M }} *{{Cite journal | author-link1=Louis J. Mordell | last1=Mordell | first1=Louis J. | title=On the rational solutions of the indeterminate equation of the third and fourth degrees | year=1922 | journal=Proc. Cambridge Philos. Soc. | volume=21 | pages=179–192 | url=https://archive.org/stream/proceedingscambr21camb#page/n0/mode/2up }} *{{Cite conference | author1-link=Aleksei Nikolaevich Parshin | last1=Paršin | first1=A. N. | book-title=Actes du Congrès International des Mathématiciens | location=Nice | year=1970 | volume=Tome 1 | publisher=Gauthier-Villars | publication-date=1971 | title=Quelques conjectures de finitude en géométrie diophantienne | pages=467–471 | url=http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0467.0472.ocr.pdf | mr=0427323 | access-date=2016-06-11 | archive-url=https://web.archive.org/web/20160924235505/http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0467.0472.ocr.pdf | archive-date=2016-09-24 | url-status=dead }} *{{eom|id=M/m064910|first=A. N. |last=Parshin |title=Mordell conjecture|mode=cs1}} *{{cite journal|title=Algebraic curves over function fields I|last=Parshin|first=A. N.|author-link=Aleksei Parshin|journal=[[Izvestiya: Mathematics|Izv. Akad. Nauk SSSR Ser. Mat.]]|volume=32|year=1968|issue=5|pages=1191–1219|doi=10.1070/IM1968v002n05ABEH000723|bibcode=1968IzMat...2.1145P}} *{{cite journal|title=Algebraic number fields|last=Shafarevich|first=I. R.|author-link=Igor Shafarevich|journal=Proceedings of the International Congress of Mathematicians|year=1963|pages=163–176}} *{{cite journal | last=Vojta | first=Paul | author-link=Paul Vojta | title=Siegel's theorem in the compact case | journal=[[Ann. of Math.]] | year=1991 | volume=133 | issue=3 | pages=509–548 | mr=1109352 | doi=10.2307/2944318 | jstor=2944318 }} {{refend}} {{Algebraic curves navbox}} {{Authority control}} [[Category:Diophantine geometry]] [[Category:Theorems in number theory]] [[Category:Theorems in algebraic geometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Algebraic curves navbox
(
edit
)
Template:Authority control
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite encyclopedia
(
edit
)
Template:Cite journal
(
edit
)
Template:Efn
(
edit
)
Template:Eom
(
edit
)
Template:Harvtxt
(
edit
)
Template:Infobox mathematical statement
(
edit
)
Template:Mvar
(
edit
)
Template:Notelist
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Sfnm
(
edit
)
Template:Short description
(
edit
)