Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Feigenbaum constants
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Mathematical constants related to chaotic behavior}} {{Use dmy dates|date=October 2023}} {{infobox non-integer number | image = Feigenbaum.png | image_caption = Feigenbaum constant {{mvar|Ξ΄}} expresses the [[limit of a sequence|limit]] of the [[ratio]] of distances between consecutive bifurcation diagram on {{math|''L<sub>i</sub>'' /''L''<sub>''i''β+β1</sub>}}. | rationality = Unknown | symbol = Ξ΄ and Ξ± | decimal = 4.6692... and 2.5029... }} In [[mathematics]], specifically [[bifurcation theory]], the '''Feigenbaum constants''' {{IPAc-en|Λ|f|aΙͺ|Ι‘|Ι|n|b|aΚ|m}}<ref>{{Citation |title=The Feigenbaum Constant (4.669) β Numberphile | date=16 January 2017 |url=https://www.youtube.com/watch?v=ETrYE4MdoLQ |language=en |access-date=2023-02-07}}</ref> {{mvar|Ξ΄}} and {{mvar|Ξ±}} are two [[mathematical constant]]s which both express ratios in a [[bifurcation diagram]] for a non-linear map. They are named after the physicist [[Mitchell J. Feigenbaum]]. ==History== Feigenbaum originally related the first constant to the [[period-doubling bifurcation]]s in the [[logistic map]], but also showed it to hold for all [[one-dimensional]] [[map (mathematics)|maps]] with a single [[Quadratic function|quadratic]] [[Maxima and minima|maximum]]. As a consequence of this generality, every [[Chaos theory|chaotic system]] that corresponds to this description will bifurcate at the same rate. Feigenbaum made this discovery in 1975,<ref>{{cite journal |url=http://chaosbook.org/extras/mjf/LA-6816-PR.pdf |last=Feigenbaum |first=M. J. |year=1976 |title=Universality in complex discrete dynamics |journal=Los Alamos Theoretical Division Annual Report 1975β1976 }}</ref><ref>{{cite book |title=Chaos: An Introduction to Dynamical Systems |first1=K. T. |last1=Alligood |first2=T. D. |last2=Sauer |first3=J. A. |last3=Yorke |publisher=Springer |year=1996 |isbn=0-387-94677-2 }}</ref> and he officially published it in 1978.<ref>{{cite journal |last1=Feigenbaum |first1=Mitchell J. |title=Quantitative universality for a class of nonlinear transformations |journal=Journal of Statistical Physics |date=1978 |volume=19 |issue=1 |pages=25β52 |doi=10.1007/BF01020332 |bibcode=1978JSP....19...25F |s2cid=124498882 }}</ref> ==The first constant== The '''first Feigenbaum constant''' or simply '''Feigenbaum constant'''<ref name=":0">{{Cite web |last=Weisstein |first=Eric W. |title=Feigenbaum Constant |url=https://mathworld.wolfram.com/FeigenbaumConstant.html |access-date=2024-10-06 |website=mathworld.wolfram.com |language=en}}</ref> {{mvar|Ξ΄}} is the limiting ratio of each bifurcation interval to the next between every [[period-doubling bifurcation|period doubling]], of a one-[[parameter]] map :<math>x_{i+1} = f(x_i),</math> where {{math|''f'' (''x'')}} is a function parameterized by the bifurcation parameter {{mvar|'''a'''}}. It is given by the [[limit of a sequence|limit]]:<ref>{{cite book |title=Non-Linear Ordinary Differential Equations: Introduction for Scientists and Engineers |edition=4th |first1=D. W. |last1=Jordan |first2=P. |last2=Smith |publisher=Oxford University Press |year=2007 |isbn=978-0-19-920825-8 }}</ref> :<math>\delta = \lim_{n\to\infty} \frac{a_{n-1} - a_{n-2}}{a_n - a_{n-1}}</math> where {{mvar|a<sub>n</sub>}} are discrete values of {{mvar|'''a'''}} at the {{mvar|n}}th period doubling. This gives its numerical value {{OEIS|id=A006890}}: <math>\delta = 4.669\,201\,609\,102\,990\,671\,853\,203\,820\,466\ldots</math> * A simple [[rational number|rational]] approximation is {{sfrac|621|133}}, which is correct to 5 significant values (when rounding). For more precision use {{sfrac|1228|263}}, which is correct to 7 significant values. * It is approximately equal to {{math|{{sfrac|10|Ο β 1}}}}, with an error of 0.0047 %. ===Illustration=== ====Non-linear maps==== To see how this number arises, consider the [[real number|real]] one-parameter map :<math>f(x) = a-x^2.</math> Here {{mvar|a}} is the bifurcation parameter, {{mvar|x}} is the variable. The values of {{mvar|a}} for which the period doubles (e.g. the largest value for {{mvar|a}} with no {{nowrap|period-2}} orbit, or the largest {{mvar|a}} with no {{nowrap|period-4}} orbit), are {{math|''a''<sub>1</sub>}}, {{math|''a''<sub>2</sub>}} etc. These are tabulated below:<ref>Alligood, [https://books.google.com/books?id=i633SeDqq-oC&pg=PA503 p. 503].</ref> :{| class="wikitable" |- ! {{mvar|n}} ! Period ! Bifurcation parameter ({{mvar|a<sub>n</sub>}}) ! Ratio {{math|{{sfrac|''a''{{sub|''n''β1}} β ''a''{{sub|''n''β2}}|''a''{{sub|''n''}} β ''a''{{sub|''n''β1}}}}}} |- | 1 || 2 || 0.75 || β |- | 2 || 4 || 1.25 || β |- | 3 || 8 || {{val|1.3680989}} || 4.2337 |- | 4 || 16 || {{val|1.3940462}} || 4.5515 |- | 5 || 32 || {{val|1.3996312}} || 4.6458 |- | 6 || 64 || {{val|1.4008286}} || 4.6639 |- | 7 || 128 || {{val|1.4010853}} || 4.6682 |- | 8 || 256 || {{val|1.4011402}} || 4.6689 |- |} The ratio in the last column converges to the first Feigenbaum constant. The same number arises for the [[logistic map]] :<math>f(x) = ax(1-x)</math> with real parameter {{mvar|a}} and variable {{mvar|x}}. Tabulating the bifurcation values again:<ref>Alligood, [https://books.google.com/books?id=i633SeDqq-oC&pg=PA504 p. 504].</ref> :{| class="wikitable" |- ! {{mvar|n}} ! Period ! Bifurcation parameter ({{mvar|a<sub>n</sub>}}) ! Ratio {{math|{{sfrac|''a''{{sub|''n''β1}} β ''a''{{sub|''n''β2}}|''a''{{sub|''n''}} β ''a''{{sub|''n''β1}}}}}} |- | 1 || 2 || 3 || β |- | 2 || 4 || {{val|3.4494897}} || β |- | 3 || 8 || {{val|3.5440903}} || 4.7514 |- | 4 || 16 || {{val|3.5644073}} || 4.6562 |- | 5 || 32 || {{val|3.5687594}} || 4.6683 |- | 6 || 64 || {{val|3.5696916}} || 4.6686 |- | 7 || 128 || {{val|3.5698913}} || 4.6680 |- | 8 || 256 || {{val|3.5699340}} || 4.6768 |- |} ====Fractals==== [[Image:Mandelbrot zoom.gif|right|thumb|201px|[[Self-similarity]] in the [[Mandelbrot set]] shown by zooming in on a round feature while panning in the negative-{{mvar|x}} direction. The display center pans from (β1, 0) to (β1.31, 0) while the view magnifies from 0.5 Γ 0.5 to 0.12 Γ 0.12 to approximate the Feigenbaum ratio.]] In the case of the [[Mandelbrot set]] for [[complex quadratic polynomial]] :<math>f(z) = z^2 + c</math> the Feigenbaum constant is the limiting ratio between the diameters of successive circles on the [[real line|real axis]] in the [[complex plane]] (see animation on the right). :{| class="wikitable" |- ! {{mvar|n}} ! Period = {{math|2<sup>''n''</sup>}} ! Bifurcation parameter ({{mvar|c<sub>n</sub>}}) ! Ratio <math>= \dfrac{c_{n-1} - c_{n-2}}{c_n - c_{n-1}}</math> |- | 1 || 2 || {{val|-0.75}} || β |- | 2 || 4 || {{val|-1.25}} || β |- | 3 || 8 || {{val|-1.3680989}} || 4.2337 |- | 4 || 16 || {{val|-1.3940462}} || 4.5515 |- | 5 || 32 || {{val|-1.3996312}} || 4.6459 |- | 6 || 64 || {{val|-1.4008287}} || 4.6639 |- | 7 || 128 || {{val|-1.4010853}} || 4.6668 |- | 8 || 256 || {{val|-1.4011402}} || 4.6740 |- |9 ||512 ||{{val|-1.401151982029}} ||4.6596 |- |10 ||1024 ||{{val|-1.401154502237}} ||4.6750 |- |... ||... ||... ||... |- |{{math|β}} || || {{val|-1.4011551890}}... || |} Bifurcation parameter is a root point of period-{{math|2<sup>''n''</sup>}} component. This series converges to '''the Feigenbaum point''' {{mvar|c}} = β1.401155...... The ratio in the last column converges to the first Feigenbaum constant. [[File:Feigenbaum Julia set.png|thumb|right|[[Julia set]] for the '''Feigenbaum point''']] Other maps also reproduce this ratio; in this sense the Feigenbaum constant in [[bifurcation theory]] is analogous to [[Pi (number)|{{pi}}]] in [[geometry]] and {{math|[[e (mathematical constant)|''e'']]}} in [[calculus]]. ==The second constant== The '''second Feigenbaum constant''' or '''Feigenbaum reduction parameter'''<ref name=":0" /> {{mvar|Ξ±}} is given by {{OEIS|id=A006891}}: :<math>\alpha = 2.502\,907\,875\,095\,892\,822\,283\,902\,873\,218\ldots</math> It is the ratio between the width of a [[tine (structural)|tine]] and the width of one of its two subtines (except the tine closest to the fold). A negative sign is applied to {{mvar|Ξ±}} when the ratio between the lower subtine and the width of the tine is measured.<ref name="NonlinearDynamics">{{cite book |title=Nonlinear Dynamics and Chaos |first=Steven H. |last=Strogatz |series=Studies in Nonlinearity |publisher=Perseus Books |year=1994 |isbn=978-0-7382-0453-6 }}</ref> These numbers apply to a large class of [[dynamical system]]s (for example, dripping faucets to population growth).<ref name="NonlinearDynamics" /> A simple rational approximation is {{sfrac|13|11}} Γ {{sfrac|17|11}} Γ {{sfrac|37|27}} = {{sfrac|8177|3267}}. ==Properties== Both numbers are believed to be [[transcendental number|transcendental]], although they have not been [[mathematical proof|proven]] to be so.<ref>{{Cite thesis |last=Briggs |first=Keith |title=Feigenbaum scaling in discrete dynamical systems |degree=PhD |publisher=[[University of Melbourne]] |url=http://keithbriggs.info/documents/Keith_Briggs_PhD.pdf |year=1997}}</ref> In fact, there is no known proof that either constant is even [[irrational number|irrational]]. The first proof of the [[universality (dynamical systems)|universality]] of the Feigenbaum constants was carried out by [[Oscar Lanford]]βwith computer-assistanceβin 1982<ref>{{cite journal |last=Lanford III |first=Oscar |year=1982 |title=A computer-assisted proof of the Feigenbaum conjectures |journal=Bull. Amer. Math. Soc. |volume=6 |issue=3 |pages=427β434 |doi=10.1090/S0273-0979-1982-15008-X |doi-access=free}}</ref> (with a small correction by [[Jean-Pierre Eckmann]] and Peter Wittwer of the [[University of Geneva]] in 1987<ref>{{Cite journal |last1=Eckmann |first1=J. P. |last2=Wittwer |first2=P. |year=1987 |title=A complete proof of the Feigenbaum conjectures |journal=Journal of Statistical Physics |volume=46 |issue=3β4 |pages=455 |bibcode=1987JSP....46..455E |doi=10.1007/BF01013368 |s2cid=121353606}} </ref>). Over the years, non-numerical methods were discovered for different parts of the proof, aiding [[Mikhail Lyubich]] in producing the first complete non-numerical proof.<ref>{{cite journal |last=Lyubich |first=Mikhail |year=1999 |title=Feigenbaum-Coullet-Tresser universality and Milnor's Hairiness Conjecture |journal=Annals of Mathematics |volume=149 |issue=2 |pages=319β420 |arxiv=math/9903201 |bibcode=1999math......3201L |doi=10.2307/120968 |jstor=120968 |s2cid=119594350}}</ref> == Other values == The period-3 window in the logistic map also has a period-doubling route to chaos, reaching chaos at <math>r = 3.854 077 963 591\dots</math>, and it has its own two Feigenbaum constants: <math>\delta = 55.26, \alpha = 9.277</math>.<ref>{{Cite journal |last1=Delbourgo |first1=R. |last2=Hart |first2=W. |last3=Kenny |first3=B. G. |date=1985-01-01 |title=Dependence of universal constants upon multiplication period in nonlinear maps |url=https://link.aps.org/doi/10.1103/PhysRevA.31.514 |journal=Physical Review A |language=en |volume=31 |issue=1 |pages=514β516 |doi=10.1103/PhysRevA.31.514 |pmid=9895509 |bibcode=1985PhRvA..31..514D |issn=0556-2791}}</ref><ref>{{Cite book |last=Hilborn |first=Robert C. |title=Chaos and nonlinear dynamics: an introduction for scientists and engineers |date=2000 |publisher=Oxford University Press |isbn=0-19-850723-2 |edition=2nd |location=Oxford |oclc=44737300 |page=578}}</ref>{{rp|at=Appendix F.2}} ==See also== {{Div col|colwidth=25em}} * [[Bifurcation diagram]] * [[Bifurcation theory]] * [[Cascading failure]] * [[Feigenbaum function]] * [[List of chaotic maps]] {{Div col end}} ==Notes== {{reflist}} ==References== * Alligood, Kathleen T., Tim D. Sauer, James A. Yorke, ''Chaos: An Introduction to Dynamical Systems, Textbooks in mathematical sciences'' Springer, 1996, {{isbn|978-0-38794-677-1}} * {{Cite journal |first=Keith |last=Briggs |url=https://www.ams.org/journals/mcom/1991-57-195/S0025-5718-1991-1079009-6/S0025-5718-1991-1079009-6.pdf |journal=Mathematics of Computation |date=July 1991 |pages=435β439 |volume=57 |title=A Precise Calculation of the Feigenbaum Constants |bibcode = 1991MaCom..57..435B |doi = 10.1090/S0025-5718-1991-1079009-6 |issue=195 |doi-access=free }} * {{Cite thesis |first=Keith |last=Briggs |url=http://keithbriggs.info/documents/Keith_Briggs_PhD.pdf |publisher=University of Melbourne |year=1997 |degree=PhD |title=Feigenbaum scaling in discrete dynamical systems }} * {{Cite web |first1=David |last1=Broadhurst |url=http://www.plouffe.fr/simon/constants/feigenbaum.txt |title= Feigenbaum constants to 1018 decimal places |date=22 March 1999 }} * {{mathworld|urlname=FeigenbaumConstant|title=Feigenbaum Constant}} ==External links== * [http://mathworld.wolfram.com/FeigenbaumConstant.html Feigenbaum Constant β from Wolfram MathWorld] * {{OEIS el|1=A006890|2=Decimal expansion of Feigenbaum bifurcation velocity}} : {{OEIS el|1=A006891|2=Decimal expansion of Feigenbaum reduction parameter}} : {{OEIS el|1=A195102|2=Decimal expansion of the parameter for the biquadratic solution of the Feigenbaum-Cvitanovic equation}} * [http://planetmath.org/feigenbaumconstant Feigenbaum constant ] β PlanetMath * Julia notebook for calculating Feigenbaum constant<ref>{{Cite web |last=HofstΓ€tter |first=Harald |date=October 25, 2015 |title=Calculation of the Feigenbaum Constants |url=http://www.harald-hofstaetter.at/Math/Feigenbaum.html |access-date=2024-04-07 |website=www.harald-hofstaetter.at}}</ref> * {{cite web|last=Moriarty|first=Philip|title={{mvar|Ξ΄}} β Feigenbaum Constant|url=http://www.sixtysymbols.com/videos/feigenbaum.htm|work=Sixty Symbols|publisher=[[Brady Haran]] for the [[University of Nottingham]]|author2=Bowley, Roger|year=2009}} * {{Cite thesis|type =PhD|last=Thurlby | first=Judi|date=2021|title=Rigorous calculations of renormalisation fixed points and attractors|publisher= U. Portsmouth|url=https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.840285}} {{Chaos theory}} {{DEFAULTSORT:Feigenbaum Constants}} [[Category:Dynamical systems]] [[Category:Eponymous numbers in mathematics]] [[Category:Mathematical constants]] [[Category:Bifurcation theory]] [[Category:Chaos theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Chaos theory
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite thesis
(
edit
)
Template:Cite web
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:IPAc-en
(
edit
)
Template:Infobox non-integer number
(
edit
)
Template:Isbn
(
edit
)
Template:Math
(
edit
)
Template:Mathworld
(
edit
)
Template:Mvar
(
edit
)
Template:Nowrap
(
edit
)
Template:OEIS
(
edit
)
Template:OEIS el
(
edit
)
Template:Pi
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)
Template:Use dmy dates
(
edit
)
Template:Val
(
edit
)