Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Feynman slash notation
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Notation for contractions with gamma matrices}} In the study of [[Fermionic field#Dirac fields|Dirac field]]s in [[quantum field theory]], [[Richard Feynman]] introduced the convenient '''Feynman slash notation''' (less commonly known as the '''[[Paul Dirac|Dirac]]''' '''slash notation'''<ref>{{citation |last=Weinberg |first=Steven |authorlink=Steven Weinberg |year=1995 |title=The Quantum Theory of Fields |volume=1 |publisher=Cambridge University Press |isbn=0-521-55001-7 |url=https://books.google.com/books?id=3ws6RJzqisQC&q=%22Dirac%20Slash%22&pg=PA358 |page=358 (380 in polish edition) }}</ref>). If ''A'' is a [[covariant vector]] (i.e., a [[1-form]]), :<math>{A\!\!\!/} \ \stackrel{\mathrm{def}}{=}\ \gamma^0 A_0 + \gamma^1 A_1 + \gamma^2 A_2 + \gamma^3 A_3 </math> where ''γ'' are the [[gamma matrices]]. Using the [[Einstein summation notation]], the expression is simply :<math>{A\!\!\!/} \ \stackrel{\mathrm{def}}{=}\ \gamma^\mu A_\mu</math>. ==Identities== Using the [[anticommutator]]s of the gamma matrices, one can show that for any <math>a_\mu</math> and <math>b_\mu</math>, :<math>\begin{align} {a\!\!\!/}{a\!\!\!/} = a^\mu a_\mu \cdot I_4 = a^2 \cdot I_4 \\ {a\!\!\!/}{b\!\!\!/} + {b\!\!\!/}{a\!\!\!/} = 2 a \cdot b \cdot I_4. \end{align}</math> where <math>I_4</math> is the identity matrix in four dimensions. In particular, :<math>{\partial\!\!\!/}^2 = \partial^2 \cdot I_4.</math> Further identities can be read off directly from the [[Gamma matrices#Identities|gamma matrix identities]] by replacing the [[metric tensor]] with [[inner product]]s. For example, :<math>\begin{align} \gamma_\mu {a\!\!\!/} \gamma^\mu &= -2 {a\!\!\!/} \\ \gamma_\mu {a\!\!\!/} {b\!\!\!/} \gamma^\mu &= 4 a \cdot b \cdot I_4 \\ \gamma_\mu {a\!\!\!/} {b\!\!\!/} {c\!\!\!/} \gamma^\mu &= -2 {c\!\!\!/}{b\!\!\!/} {a\!\!\!/} \\ \gamma_\mu {a\!\!\!/} {b\!\!\!/} {c\!\!\!/}{d\!\!\!/} \gamma^\mu &= 2( {d\!\!\!/} {a\!\!\!/} {b\!\!\!/}{c\!\!\!/}+{c\!\!\!/} {b\!\!\!/} {a\!\!\!/}{d\!\!\!/}) \\ \operatorname{tr}({a\!\!\!/}{b\!\!\!/}) &= 4 a \cdot b \\ \operatorname{tr}({a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}) &= 4 \left[(a \cdot b)(c \cdot d) - (a \cdot c)(b \cdot d) + (a \cdot d)(b \cdot c) \right] \\ \operatorname{tr}({a\!\!\!/}{\gamma^\mu}{b\!\!\!/}{\gamma^\nu }) &= 4 \left[a^\mu b^\nu + a^\nu b^\mu - \eta^{\mu \nu}(a \cdot b) \right] \\ \operatorname{tr}(\gamma_5 {a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}) &= 4 i \varepsilon_{\mu \nu \lambda \sigma} a^\mu b^\nu c^\lambda d^\sigma \\ \operatorname{tr}({\gamma^\mu}{a\!\!\!/}{\gamma^\nu}) &= 0 \\ \operatorname{tr}({\gamma^5}{a\!\!\!/}{b\!\!\!/}) &= 0 \\ \operatorname{tr}({\gamma^0}({a\!\!\!/}+m){\gamma^0}({b\!\!\!/}+m)) &= 8a^0b^0-4(a \cdot b)+4m^2 \\ \operatorname{tr}(({a\!\!\!/}+m){\gamma^\mu}({b\!\!\!/}+m){\gamma^\nu}) &= 4 \left[a^\mu b^\nu+a^\nu b^\mu - \eta^{\mu \nu}((a \cdot b)-m^2) \right] \\ \operatorname{tr}({a\!\!\!/}_1...{a\!\!\!/}_{2n}) &= \operatorname{tr}({a\!\!\!/}_{2n}...{a\!\!\!/}_1) \\ \operatorname{tr}({a\!\!\!/}_1...{a\!\!\!/}_{2n+1}) &= 0 \end{align}</math> where: *<math>\varepsilon_{\mu \nu \lambda \sigma}</math> is the [[Levi-Civita symbol]] *<math>\eta^{\mu \nu}</math> is the [[Minkowski metric]] *<math>m</math> is a scalar. ==With four-momentum== This section uses the {{math|(+ β β β)}} [[metric signature]]. Often, when using the [[Dirac equation]] and solving for cross sections, one finds the slash notation used on [[four-momentum]]: using the [[Dirac basis]] for the gamma matrices, :<math>\gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix},\quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \,</math> as well as the definition of contravariant four-momentum in [[natural units]], :<math> p^\mu = \left(E, p_x, p_y, p_z \right) \,</math> we see explicitly that :<math>\begin{align} {p\!\!/} &= \gamma^\mu p_\mu = \gamma^0 p^0 - \gamma^i p^i \\ &= \begin{bmatrix} p^0 & 0 \\ 0 & -p^0 \end{bmatrix} - \begin{bmatrix} 0 & \sigma^i p^i \\ -\sigma^i p^i & 0 \end{bmatrix} \\ &= \begin{bmatrix} E & -\vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -E \end{bmatrix}. \end{align}</math> Similar results hold in other bases, such as the [[Weyl basis]]. ==See also== *[[Weyl basis]] *[[Gamma matrices]] *[[Four-vector]] *[[S-matrix]] ==References== {{reflist}} {{refbegin}} * {{cite book |author1=Halzen, Francis |authorlink1 = Francis Halzen |author2=Martin, Alan | authorlink2 = Alan Martin (physicist)| title=Quarks & Leptons: An Introductory Course in Modern Particle Physics |url=https://archive.org/details/quarksleptonsint0000halz |url-access=registration | publisher=John Wiley & Sons | year=1984 | isbn=0-471-88741-2}} {{refend}} {{Richard Feynman}} [[Category:Quantum field theory]] [[Category:Spinors]] [[Category:Richard Feynman]] [[de:Dirac-Matrizen#Feynman-Slash-Notation]] {{quantum-stub}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Math
(
edit
)
Template:Quantum-stub
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Richard Feynman
(
edit
)
Template:Short description
(
edit
)