Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci polynomials
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Sequence of polynomials defined recursively}} In [[mathematics]], the '''Fibonacci polynomials''' are a [[polynomial sequence]] which can be considered as a generalization of the [[Fibonacci number]]s. The polynomials generated in a similar way from the [[Lucas numbers]] are called '''Lucas polynomials'''. ==Definition== These Fibonacci [[polynomial]]s are defined by a [[recurrence relation]]:<ref name=BQ141>Benjamin & Quinn p. 141</ref> :<math>F_n(x)= \begin{cases} 0, & \mbox{if } n = 0\\ 1, & \mbox{if } n = 1\\ x F_{n - 1}(x) + F_{n - 2}(x),& \mbox{if } n \geq 2 \end{cases}</math> The Lucas polynomials use the same recurrence with different starting values:<ref>Benjamin & Quinn p. 142</ref> :<math>L_n(x) = \begin{cases} 2, & \mbox{if } n = 0 \\ x, & \mbox{if } n = 1 \\ x L_{n - 1}(x) + L_{n - 2}(x), & \mbox{if } n \geq 2. \end{cases}</math> They can be defined for negative indices by<ref name=Springer ''Invalid citation.''>Springer</ref> :<math>F_{-n}(x)=(-1)^{n-1}F_{n}(x),</math> :<math>L_{-n}(x)=(-1)^nL_{n}(x).</math> The Fibonacci polynomials form a sequence of [[Orthogonal_polynomials#Recurrence_relation|orthogonal polynomials]] with <math>A_n=C_n=1</math> and <math>B_n=0</math>. == Examples == The first few Fibonacci polynomials are: :<math>F_0(x)=0 \,</math> :<math>F_1(x)=1 \,</math> :<math>F_2(x)=x \,</math> :<math>F_3(x)=x^2+1 \,</math> :<math>F_4(x)=x^3+2x \,</math> :<math>F_5(x)=x^4+3x^2+1 \,</math> :<math>F_6(x)=x^5+4x^3+3x \,</math> The first few Lucas polynomials are: :<math>L_0(x)=2 \,</math> :<math>L_1(x)=x \,</math> :<math>L_2(x)=x^2+2 \,</math> :<math>L_3(x)=x^3+3x \,</math> :<math>L_4(x)=x^4+4x^2+2 \,</math> :<math>L_5(x)=x^5+5x^3+5x \,</math> :<math>L_6(x)=x^6+6x^4+9x^2 + 2. \,</math> == Properties == * The degree of ''F''<sub>''n''</sub> is ''n'' − 1 and the degree of ''L''<sub>''n''</sub> is ''n''. * The Fibonacci and Lucas numbers are recovered by evaluating the polynomials at ''x'' = 1; [[Pell numbers]] are recovered by evaluating ''F''<sub>''n''</sub> at ''x'' = 2. * The [[Generating function#Ordinary generating function|ordinary generating functions]] for the sequences are:<ref>{{MathWorld | urlname=FibonacciPolynomial | title=Fibonacci Polynomial}}</ref> *:<math> \sum_{n=0}^\infty F_n(x) t^n = \frac{t}{1-xt-t^2}</math> *:<math> \sum_{n=0}^\infty L_n(x) t^n = \frac{2-xt}{1-xt-t^2}.</math> *The polynomials can be expressed in terms of [[Lucas sequence]]s as *:<math>F_n(x) = U_n(x,-1),\,</math> *:<math>L_n(x) = V_n(x,-1).\,</math> *They can also be expressed in terms of [[Chebyshev polynomials]] <math>\mathcal{T}_n(x)</math> and <math>\mathcal{U}_n(x)</math> as *:<math>F_n(x) = i^{n-1}\cdot\mathcal{U}_{n-1}(\tfrac{-ix}2),\,</math> *:<math>L_n(x) = 2\cdot i^n\cdot\mathcal{T}_n(\tfrac{-ix}2),\,</math> :where <math>i</math> is the [[imaginary unit]]. ==Identities== {{main|Lucas sequence}} As particular cases of Lucas sequences, Fibonacci polynomials satisfy a number of identities, such as<ref name=Springer/> :<math>F_{m+n}(x)=F_{m+1}(x)F_n(x)+F_m(x)F_{n-1}(x)\,</math> :<math>L_{m+n}(x)=L_m(x)L_n(x)-(-1)^nL_{m-n}(x)\,</math> :<math>F_{n+1}(x)F_{n-1}(x)- F_n(x)^2=(-1)^n\,</math> :<math>F_{2n}(x)=F_n(x)L_n(x).\,</math> Closed form expressions, similar to Binet's formula are:<ref name=Springer/> :<math>F_n(x)=\frac{\alpha(x)^n-\beta(x)^n}{\alpha(x)-\beta(x)},\,L_n(x)=\alpha(x)^n+\beta(x)^n,</math> where :<math>\alpha(x)=\frac{x+\sqrt{x^2+4}}{2},\,\beta(x)=\frac{x-\sqrt{x^2+4}}{2}</math> are the solutions (in ''t'') of :<math>t^2-xt-1=0.\,</math> For Lucas Polynomials ''n'' > 0, we have :<math>L_n(x)=\sum_{k=0}^{\lfloor n/2\rfloor} \frac{n}{n-k} \binom{n-k}{k} x^{n-2k}.</math> A relationship between the Fibonacci polynomials and the standard basis polynomials is given by<ref>A proof starts from page 5 in [https://web.archive.org/web/20170202051159/http://cmimc.org/Documents/Archive/AlgebraSolutions_2016.pdf Algebra Solutions Packet (no author)].</ref> :<math>x^n=F_{n+1}(x)+\sum_{k=1}^{\lfloor n/2\rfloor}(-1)^k\left[\binom nk-\binom n{k-1}\right]F_{n+1-2k}(x).</math> For example, :<math>x^4 = F_5(x)-3F_3(x)+2F_1(x)\,</math> :<math>x^5 = F_6(x)-4F_4(x)+5F_2(x)\,</math> :<math>x^6 = F_7(x)-5F_5(x)+9F_3(x)-5F_1(x)\,</math> :<math>x^7 = F_8(x)-6F_6(x)+14F_4(x)-14F_2(x)\,</math> ==Combinatorial interpretation== [[File:pascal_triangle_fibonacci.svg|thumb|upright=1.25|The coefficients of the Fibonacci polynomials can be read off from a left-justified Pascal's triangle following the diagonals (shown in red). The sums of the coefficients are the Fibonacci numbers.]] If ''F''(''n'',''k'') is the coefficient of ''x<sup>k</sup>'' in ''F<sub>n</sub>''(''x''), namely :<math>F_n(x)=\sum_{k=0}^n F(n,k)x^k,\,</math> then ''F''(''n'',''k'') is the number of ways an ''n''โ1 by 1 rectangle can be tiled with 2 by 1 [[domino]]es and 1 by 1 squares so that exactly ''k'' squares are used.<ref name=BQ141/> Equivalently, ''F''(''n'',''k'') is the number of ways of writing ''n''โ1 as an [[Composition (number theory)|ordered sum]] involving only 1 and 2, so that 1 is used exactly ''k'' times. For example F(6,3)=4 and 5 can be written in 4 ways, 1+1+1+2, 1+1+2+1, 1+2+1+1, 2+1+1+1, as a sum involving only 1 and 2 with 1 used 3 times. By counting the number of times 1 and 2 are both used in such a sum, it is evident that <math>F(n, k)=\begin{cases}\displaystyle\binom{\frac12(n+k-1)}{k} &\text{if }n \not\equiv k \pmod 2,\\[12pt] 0 &\text{else}. \end{cases}</math> This gives a way of reading the coefficients from [[Pascal's triangle]] as shown on the right. ==References== {{reflist}} *{{cite book | title = Proofs that Really Count: The Art of Combinatorial Proof | first1 = Arthur T. | last1 = Benjamin | author1-link = Arthur T. Benjamin | first2 = Jennifer J. | last2 = Quinn | author2-link = Jennifer Quinn | publisher = [[Mathematical Association of America]] | series = Dolciani Mathematical Expositions | volume = 27 | year = 2003 | isbn = 978-0-88385-333-7 | chapter = Fibonacci and Lucas Polynomial | page = [https://archive.org/details/proofsthatreally0000benj/page/141 141] }} <!-- Note: This source idiosyncratically shifts the index by 1, allow for this when checking the formulas. --> *{{SpringerEOM|title=Fibonacci polynomials |id=Fibonacci_polynomials&oldid=14185|last=Philippou|first=Andreas N.}} *{{SpringerEOM|title=Lucas polynomials |id=Lucas_polynomials&oldid=17297|last=Philippou|first=Andreas N.}} * {{MathWorld | urlname=LucasPolynomial| title=Lucas Polynomial}} *Jin, Z. On the Lucas polynomials and some of their new identities. Advances in Differential Equations 2018, 126 (2018). https://doi.org/10.1186/s13662-018-1527-9 ==Further reading== * {{cite journal | first1=V. E.|last1=Hoggatt | authorlink=Verner Emil Hoggatt, Jr. | first2=Marjorie | last2=Bicknell | title=Roots of Fibonacci polynomials. | journal=[[Fibonacci Quarterly]] | volume=11 | pages=271โ274 | year=1973 | issn=0015-0517| mr=0332645 }} * {{cite journal | first1=V. E.|last1=Hoggatt | first2=Calvin T. | last2=Long | title=Divisibility properties of generalized Fibonacci Polynomials | journal=[[Fibonacci Quarterly]] | volume=12 | page=113 | year=1974 | mr=0352034 }} * {{cite journal | last1=Ricci |first1=Paolo Emilio | title=Generalized Lucas polynomials and Fibonacci polynomials | journal=Rivista di Matematica della Universitร di Parma|series= V. Ser. | volume=4 | year=1995 | pages=137โ146 |mr=1395332 }} * {{cite journal|last1=Yuan |first1=Yi |last2=Zhang|first2=Wenpeng |journal=Fibonacci Quarterly| year=2002 |title =Some identities involving the Fibonacci Polynomials |page=314|mr=1920571|volume=40|issue=4}} * {{cite journal|first1=Johann|last1=Cigler |journal=Fibonacci Quarterly |year=2003 |mr=1962279 | pages=31โ40|number=41|title=q-Fibonacci polynomials}} ==External links== *{{OEIS el|sequencenumber=A162515|name=Triangle of coefficients of polynomials defined by Binet form|formalname=Triangle of coefficients of polynomials defined by Binet form: P(n,x) = (U^n-L^n)/d, where U=(x+d)/2, L=(x-d)/2, d=(4 + x^2)^(1/2)}} *{{OEIS el|sequencenumber=A011973|name=Triangle of coefficients of Fibonacci polynomials|formalname=Triangle of numbers {C(n-k,k), n >= 0, 0 <= k <= floor(n/2)}; or, triangle of coefficients of (one version of) Fibonacci polynomials}} [[Category:Polynomials]] [[Category:Fibonacci numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Main
(
edit
)
Template:MathWorld
(
edit
)
Template:OEIS el
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:SpringerEOM
(
edit
)